

Cervical Cytology Image Analysis and Classification Using Graph-Based Techniques and Deep Learning

Sudhir Sornapudi, Ph.D. student¹, Gregory T. Brown, M.D., Ph.D.², Zhiyun Xue, Ph.D.², Rodney Long, M.A.², Lisa Allen, B.S., CT³, Sameer Antani, Ph.D.²

¹Missouri University of Science and Technology, Rolla, MO, USA; ²Lister Hill National Center for Biomedical Communications, U.S. National Library of Medicine, Bethesda, MD, USA; ³Diagnostic Systems Women's Health and Cancer, Becton Dickinson and Company, Durham, NC, USA

Sudhir Sornapudi

Website: https://sdhir.github.io Twitter: @Sdhir23

S54: Oral Presentations Translational Bioinformatics and Big Data in Cancer

#AMIA2019

The authors have no commercial interests to disclose.

Those with BD are already commercial, but the work wasn't commercial in nature. Included all authors and affiliations on main slide.

Learning Objectives

After participating in this session the learner should be better able to:

- Understand the importance of image preprocessing automate the data preparation.
- Understand the concepts of image registration, superpixel, region adjacency graph, image classification.

Introduction

Cervical Cancer

- One of the most common cancer among women.
- 2018 Worldwide Statistics ^A
 - **570,000** new cases.
 - 311,000 women died from cervical cancer.
- Cervical cancer that is detected early is more likely to be treated successfully.
- Early detection is accomplished via cervical cytopathology from Pap smears.

^A "Human papillomavirus (HPV) and cervical cancer," World Health Organization 2019.

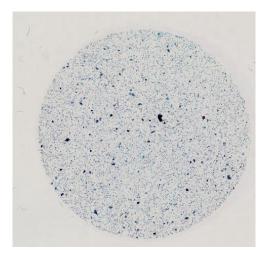
Datasets

NLM Data

- 25 cytology whole slide images.
- Provided by BD (Becton-Dickinson) Corporation.
- The slides are prepared through Liquid based Cytology (LBC).
 - Thin layer slide preparation technology
 - Using Sure Path technique
- Herlev Pap Smear Dataset
 - 917 cervical cell images.
 - Extracted through Conventional Pap Smear.

Dataset

Clean Slide image



Annotated Slide image

0

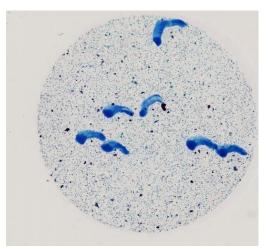
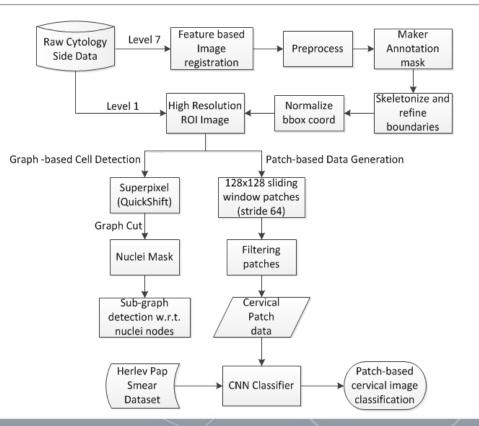


Image Properties			×			
ile Properties	Macro image					
Image type	Hamamatsu NDPI					
File name	12XS00692.ndpi					
File path						
File size	342.2 MiB					
Image width	61440					
Image height	59136					
Pixel size	0.228003 x 0.228003 um					
Magnification	40X					
Display color	y color RGB (32 bpp)					
Image Centre	5.95953, 0.704433 mm					
Pyramid structure	Level 0: (61440,59136) Level 1: (30720,29568) Level 2: (15360,14784) Level 3: (7680,7392) Level 4: (3840,3696) Level 5: (1920,1848) Level 5: (960,924) Level 7: (480,462) Level 8: (240,231)					

Note: Displayed images are from level 7

Framework of Proposed Approach



Region of Interest (ROI) detection

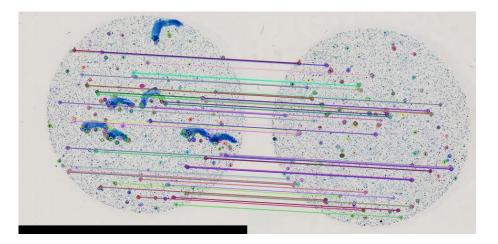


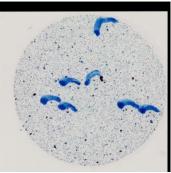
Image Registration

- ORB feature detector ^A
- Match features
- Calculate Homography
 - Uses RANSAC* estimation technique

Matching Key-points

^A Ethan Rublee, Vincent Rabaud, Kurt Konolige, Gary R. Bradski: ORB: An efficient alternative to SIFT or SURF. ICCV 2011: 2564-2571 * Random sample consensus (**RANSAC**) is an iterative method to estimate parameters of a mathematical model from a set of observed data that contains outliers

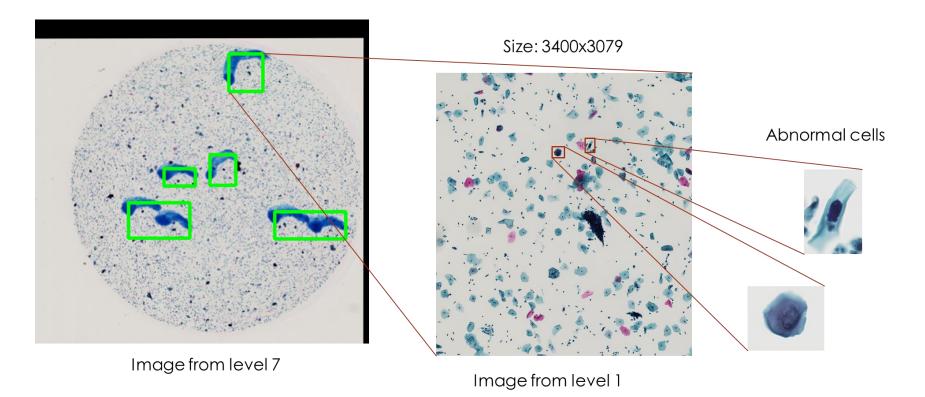
Region of Interest (ROI) detection



Detecting marked regions

ROIs detected Mask output B_color_space - R_color_space Threshold Skeletonize Morphological Refine operations boundaries

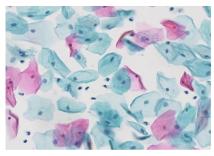
Locating Abnormal Cells



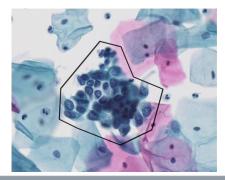
AMIA 2019 Annual Symposium | amia.org

Cell Classification

 NILM (Negative for Intraepithelial Lesion or Malignancy)

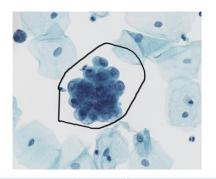


 HSIL (Higher-grade Squamous intraepithelial lesion)

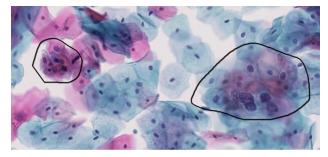


 ASCUS (Atypical squamous cells of undetermined significance)

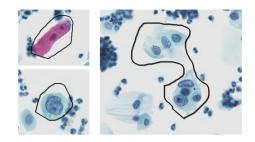
Adeno (Adenocarcinoma)



 LSIL (Lower-grade Squamous intraepithelial lesion)



SCC (Squamous cell carcinoma)



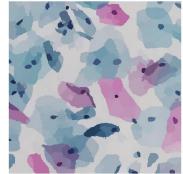
Cell Data Generation

- We employ two methods:
 - Graph based cell detection
 - Patch based data generation

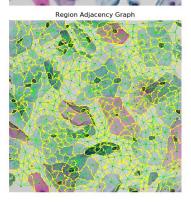
Graph-based Cell Detection

- Superpixel generation using QuickShift^A technique
- Averaging pixel intensities over superpixel regions
- Create a Graph:
 - Node = Centroid of superpixel regions
 - Edge = Connecting adjacent nodes
 - Edge weight = $\left| \sqrt{n_1^2 n_2^2} \right|$
- Graph Cut, with threshold = 59 (chosen empirically)
- Output: Nuclei mask

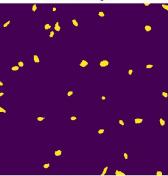
Quickshift and Averaging over superpixels



Nuclei mask using RAG



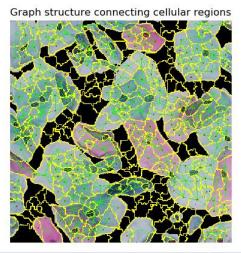
Original Image



^AA. Vedaldi and S. Soatto. Quick shift and kernel methods for mode seeking. In Proc. ECCV, 2008

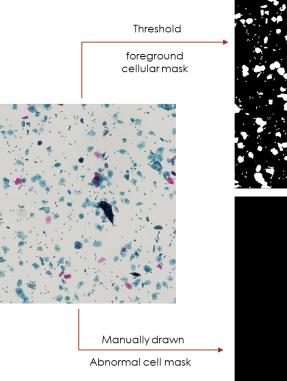
Graph-based Cell Detection

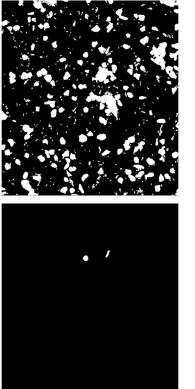
- Cell Detection
 - Threshold to remove background
 - Join regions nodes adjacent to nuclei node
 - Working on the problem to improve the cell detection





Patch-Based Data Generation



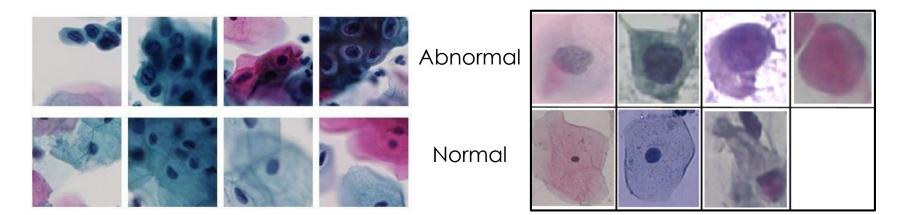


- 128x128 patch generation from sliding window technique (stride = 64)
- Patches containing more than 75% of background were discarded.
- Ground truth labels for each patch were generated w.r.t abnormal cell mask.
 - Object area > 20% Patch area → Abnormal
 - Otherwise → Normal

Cell Data for Classification

- Patch Based Data Generation
 - 4120 multi-cell images
 - Abnormal images: 2060
 - Normal images: 2060

- Herlev Pap Smear Dataset
 - 917 individual cell images
 - Abnormal cells: 675
 - Normal cells: 242



Classification

CNN-based Classifier

- Fine-tuning models initialized with pretrained ImageNet weights.
- No. of Epochs = 500
- Batch Size = 32
- Optimizer: Stochastic Gradient Descent
- Learning rate = 0.005, Momentum = 0.9
- Loss Function: Cross Entropy Loss
- Trained weights saved at epoch with best accuracy

Input for CNN Classifier		Total	Patch data	Herlev data
Training	Normal	1396	1200	196
	Abnormal	1760	1200	560
Validation	Normal	246	200	46
	Abnormal	315	200	115
Testing	Normal	660	660	-
	Abnormal	660	660	-
Total		5037	4120	917

Classification Results

- PyTorch Deep Learning Platform.
- Models run on Nvidia DGX-1.
- VGG-19 was observed to give better performance

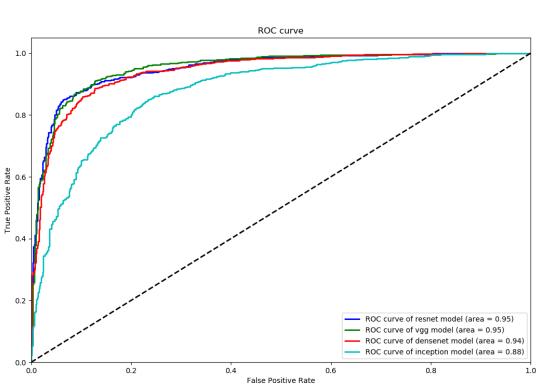
Model	Confusion matrix $ \begin{bmatrix} TN & FP \\ FN & TP \end{bmatrix} $	Accuracy	Precision	Recall	F1-score	ROC_AUC
Resnet-50	$\begin{bmatrix} 589 & 71 \\ 78 & 582 \end{bmatrix}$	0.8871	0.8913	0.8818	0.8865	0.95
VGG-19	$\begin{bmatrix} 581 & 79 \\ 68 & 592 \end{bmatrix}$	0.8886	0.8823	0.8970	0.8896	0.95
Densenet-121	$\begin{bmatrix} 611 & 49 \\ 131 & 529 \end{bmatrix}$	0.8636	0.9152	0.8015	0.8546	0.94
Inception_v3	$\begin{bmatrix} 429 & 231 \\ 57 & 603 \end{bmatrix}$	0.7818	0.7230	0.9136	0.8072	0.88

AMIA 2019 Annual Symposium | amia.org

19

Classification Results

- PyTorch Deep Learning Platform.
- Models run on Nvidia DGX-1.
- VGG-19 was observed to give better performance
- However, VGG-19 would take longer time to train and is computationally expensive compared to ResNet-50.



Conclusion

- This is an opportunity to explore use of Machine Learning and Artificial Intelligence for improving efficiency in cervical cytology.
- Cell detection and classification pose great challenges due to
 - Limited availability of proper annotated data
 - Complexity due to overlapping cells
- Our method performs well as a binary classifier.
- Classification task could be extended to perform multi-class classification.
- Need to develop robust cell detection algorithm using Reinforcement learning techniques

Thank you!

Email me at:

ssbw5@mst.edu