
Regression based Deep Neural Networks for 
Epithelium Segmentation in Histopathology Images

Introduction: Automated 

Pathology for Early Detection 

of Cervical Cancer
 Cervical cancer, 4th most common cancer

affecting women world wide.

 2018 Statistics:

 Estimated new cases: 570,000.

 Low and middle income countries

account for 90% of deaths.

 Prevention of cervical cancer mortality is

possible with diagnosis at the pre-cancer

stage.

 Segmentation of epithelium in cervical

histology images is crucial for analysis of

nuclei and other image features needed to

classify the squamous epithelium into

cervical intraepithelial neoplasia (CIN)

grades.

 This study presents EpithNet, a deep

regression approach for automated

epithelium segmentation in digitized

cervical histology images.

 This new deep learning technique is more 

accurate for this architectural segmentation 

than a state-of-the-art technique (UNet-64). 

 EpithNet-mc could serve as a useful tool for 

pathologists.

Proposed Model
Automatic Epithelium 

Segmentation

The Challenge: Automatic 

Detection of Epithelium in 

Histology Images

Conclusions

Epithelium Analysis

 Epithelium analysis process used in previous 

research based on a manually segmented 

epithelium.

Slice and Predict

Previous usage of Epithelium 

analysis 

Post-processing
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Manually generated mask

 The task is challenging due to:

 Varying levels of Hematoxylin and Eosin

(H&E) staining.

 Varying shapes of epithelial regions.

 Varying density and shape of cells.

 Presence of blood in the tissue sample.

 Presence of columnar cellular regions.

 We explore the possibility of constructing

small-scale but efficient convolutional neural

networks (CNNs) to solve the difficult

automated segmentation task.

 Based on the idea:

 Information provided by a pixel depends on the

surrounding spatial proximity in the image

plane.

 Pixel-wise epithelial probability estimation.

EpithNet

% Preprocess

Generate (𝑛,𝑚) patches with stride 𝑠
Calculate the respective ground-truth probabilities,

𝑦𝑔𝑡
𝑘 =

1

𝑚𝑛
σ𝑥=0
𝑚−1σ𝑦=0

𝑛−1 𝑝𝑚𝑎𝑠𝑘
𝑘 (𝑥, 𝑦)

% Train

Initialize weights and bias

For i=1: N_epochs, do

Forward Pass, predict ො𝑦𝑘

L1 Loss: 𝐿 = σ𝑘=1
𝑛 |𝑦𝑔𝑡

𝑘 − ො𝑦𝑘|

Backpropagate,

Update weights with Adadelta optimizer: 𝜃𝑖+1 = 𝜃𝑖 + ∆𝜃𝑖
End For

Save model and weights

% Test

Load model and weights

Pad image: 𝑝𝑎𝑑𝑟 = 𝑛𝑟𝑠 − 𝑟𝑒𝑚 𝑀, 𝑛𝑟𝑠 , 𝑝𝑎𝑑𝑐 = 𝑛𝑐𝑠 − 𝑟𝑒𝑚 𝑁, 𝑛𝑐𝑠
Slice image to (𝑝, 𝑞) sub-images,

𝑛𝑡 =
𝑀𝑁

𝑝𝑞
, 𝑛𝑟 = 𝑛𝑡 , 𝑛𝑐 =

𝑛𝑡

𝑛𝑡

Generate (𝑛,𝑚) patches with stride 4

Predict the probability of each pixel

Combine the predictions to form a gradient mask

Upscale the mask by factor of 4

% Post-process

Threshold the mask

Smooth the mask edges with quadratic Bezier curve,

𝐵 𝑡 = 𝑃𝑖+1 + 1 − 𝑡 2 𝑃𝑖 − 𝑃𝑖+1 + 𝑡2𝑃𝑖+2

Algorithm

Experimental Models

 Unet-64

 Multi-crop EpithNet (EpithNet-mc)

 Designed to read 64×64 

image.

 Combined proposed 

models with center-crop 

and concatenation of features.

Model UNet-
64

EpithNet-
16

EpithNet-
32

EpithNet-
64

EpithNet-
mc

Parameters (×
106)

31.032 1.071 1.669 3.013 6.856

Table I. Model Complexity

Model 𝐽 𝐷𝑆𝐶 𝑃𝐴 𝑀𝐼 𝐹𝑊𝐼

UNet-64 median 0.738 0.849 0.845 0.709 0.740
mean 0.676 0.789 0.822 0.692 0.712
std 0.190 0.160 0.116 0.153 0.154

EpithNet-16 median 0.939 0.969 0.965 0.959 0.921
mean 0.915 0.954 0.951 0.943 0.897
std 0.070 0.043 0.045 0.049 0.081

EpithNet-32 median 0.947 0.973 0.970 0.966 0.933
mean 0.931 0.964 0.961 0.954 0.916
std 0.049 0.028 0.029 0.037 0.059

EpithNet-64 median 0.950 0.974 0.972 0.939 0.945
mean 0.935 0.966 0.963 0.920 0.930
std 0.049 0.028 0.032 0.062 0.054

EpithNet-mc median 0.952 0.976 0.974 0.942 0.949
mean 0.940 0.969 0.966 0.926 0.936
std 0.041 0.023 0.026 0.052 0.046

Table II. Results on 311 cervical histology test data.

 Models are named after input image sizes:

EpithNet-16, EpithNet-32 and EpithNet-64.

 Considered 40 histology images

 254,514 image patches of size 𝑛 × 𝑚 × 3 were 

generated.


