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Introduction: Automated

Automatic Epithelium

Proposed Model Segmentation

Pathology for Early Detection

of Cervical Cancer .

Cervical cancer, 4" most common cancer
affecting women world wide.
= 2018 Statistics:
= Estimated new cases: 570,000.
= Low and middle Income countries
account for 90% of deaths.
= Prevention of cervical cancer mortality Is
possible with diagnosis at the pre-cancer
stage.
= Segmentation of epithelium In cervical
histology images Is crucial for analysis of
nuclel and other image features needed to
classify the sguamous epithelium Into

Based on the idea:
= |nformation provided by a pixel depends on the
surrounding spatial proximity In the image
plane.
= Pixel-wise epithelial probability estimation.

e Generation of smaller patch image data
e Normalizing the data

Data Pre-
processing

e Create EpithNet: Regression based CNN model|
* Train EpithNet

¢ Pixel-wise Probability prediction
¢ Use of Memory optimized workflow

cervical Intraepithelial neoplasia (CIN)
grades. * Threshold and Generate a binary mask ' Post-processing
= This study presents EpithNet, a deep pm'::::s'ing e Mask cleaned and smoothened over the edges
regression approach for automated Experi mental Models
epithelium segmentation In digitized

_ = Unet-64
Eplth Net = Multi-crop EpithNet (EpithNet-mc)

a

Models are named after input image sizes:
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= Presence of blood in the tissue sample.
= Presence of columnar cellular regions.

EpithNet-
64

(c) EpithNet-64

1.669 3.013 6.856

Parameters (X 31.032 1.071
10°)

= We explore the possibility of constructing
small-scale but efficient convolutional neural
networks (CNNs) to solve the difficult
automated segmentation task.

Algorithm

% Preprocess

Generate (n, m) patches with stride s
Calculate the respective ground-truth probabilities,

Results

Table Il. Results on 311 cervical histology test data.
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Epithelium Analysis

Epithelium analysis process used in previous
research based on a manually segmented
epithelium.

Upscale the mask by factor of 4
% Post-process
Threshold the mask

Smooth the mask edges with quadratic Bezier curve,
B(t) = Piyq + (1 —t)*(P; — Piyq1) + t?Piy,

= This new deep learning technique is more

accurate for this architectural segmentation
than a state-of-the-art technigue (UNet-64).

EpithNet-mc could serve as a useful tool for

pathologists.




