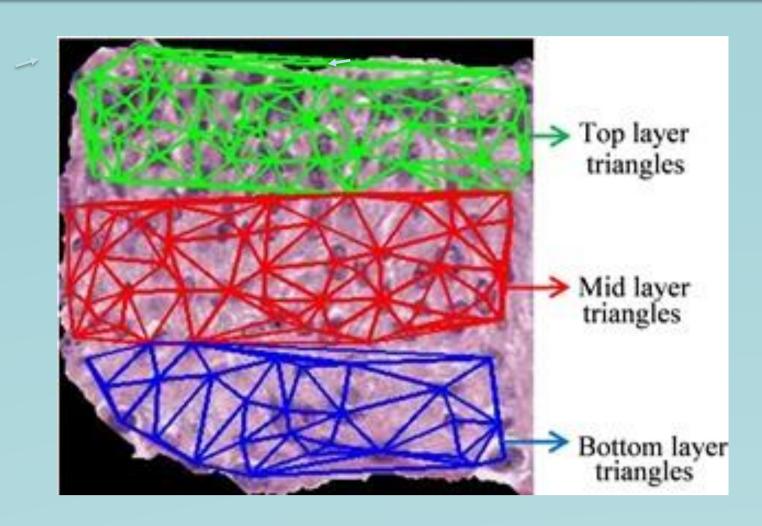


Update on Microscopic Image Processing: Detecting Successively Finer Structures— Architecture, Cells, Nuclei


William V. Stoecker¹ Haidar A. Almubarak², Sudhir Sornapudi², Peng Guo², Jason Hagerty^{1,2}, and R. Joe Stanley². ¹Stoecker & Associates, Rolla, MO USA

²Missouri University of Science and Technology, Department of Electrical and Computer Engineering, Rolla, MO USA {wvs, haa99d, ssbw5, pgp49, jrh55c, stanleyj}@mst.edu

INTRODUCTION

- Cervical cancer is the fourth most prevalent cancer globally, causing 250,000 deaths/year.
- The best test for cervical precancer is histopathology evaluation by a pathologist.
- Most cervical cancer cases are in Africa, where there is a shortage of trained pathologists.

LAYERED ARCHITECTURE

Delaunay triangles for layer description

CLASSIFIER RESULTS

- Two classifiers, linear discriminant analysis (LDA) and support vector machines (SVM) were used to classify 61 **CIN** images
- Exact-class labeling was 83.6% accurate • and labeling at least within one grade (off-by-one) was 98.4% accurate ¹

	Fusion-based classification		
	SVM	LDA	
Exact Class Label	78.69%	83.61%	
Normal vs. CIN	96.72%	96.72%	
Off-by-One	98.36%	98.36%	

New image processing techniques allow automated determination of cervical pre-cancer CIN1 to CIN4.

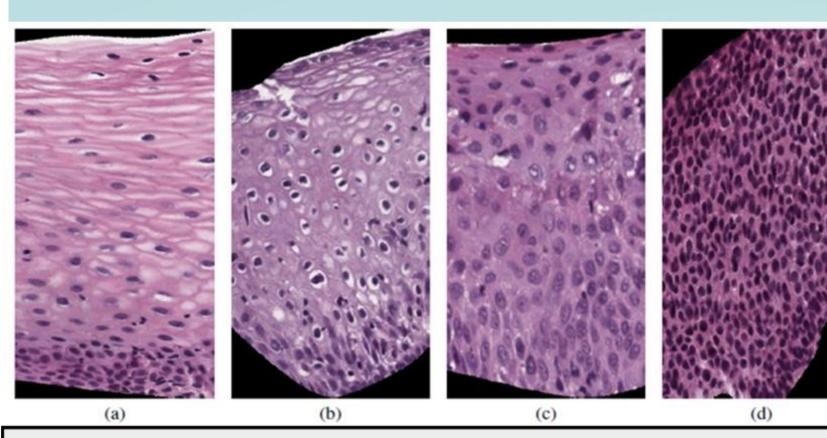
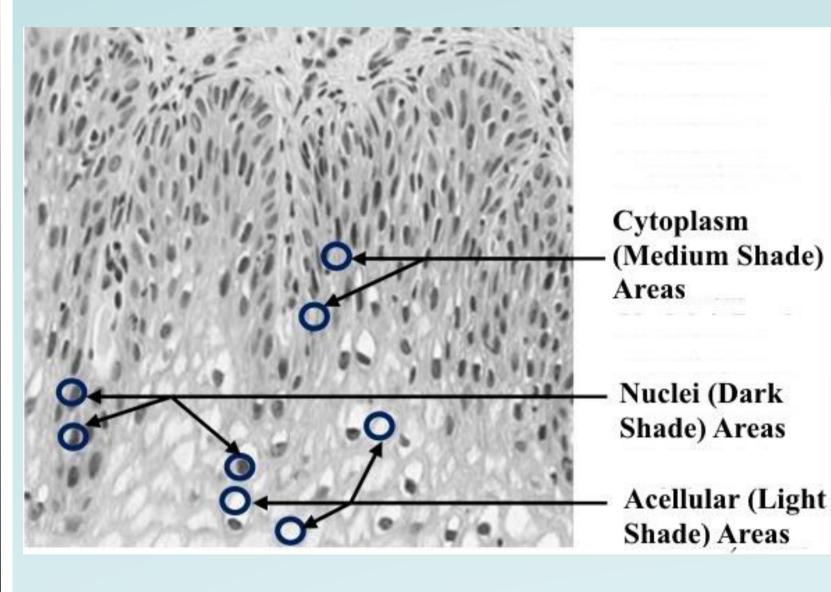


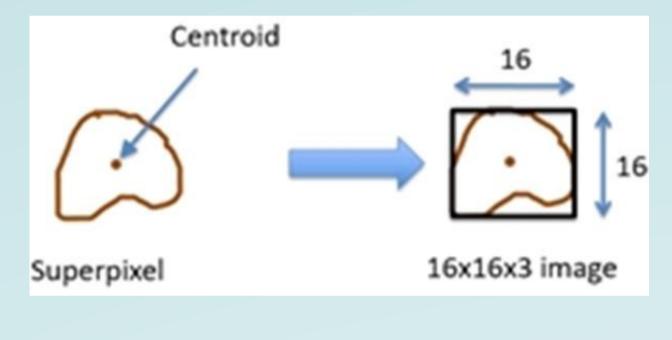
Fig. 1 CIN grades (a) Normal. (b) CIN1. (c) CIN 2. (d) CIN 3

METHODS

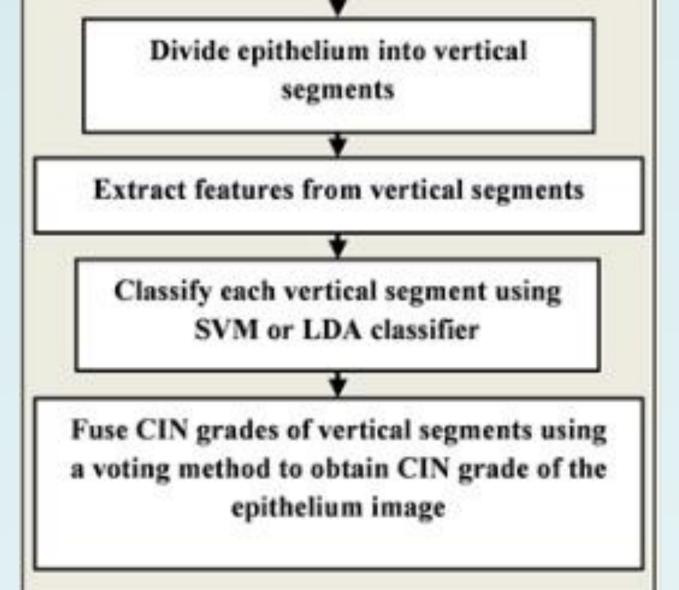

To determine of CIN1 grade: Normal, CIN 1-3, we used a fusion technique:

Fusion-based Approach

Whole epithelium image	


PRE-CANCER STRUCTURES

- 3 structures were detected by Intensity
- Cytoplasm
- Nuclei
- Acellular features


DEEP LEARNING NUCLEI DETECTION

In another study, patch-based deep learning was used to improve nuclei detection²

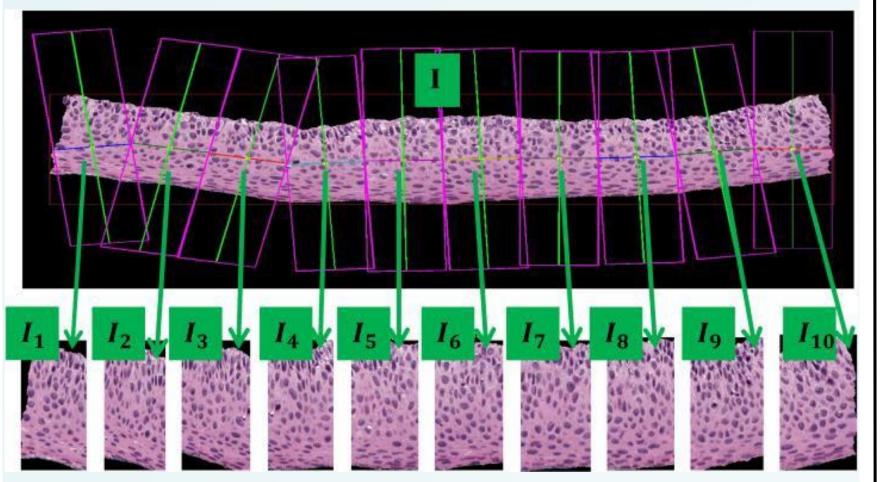
Patch-based deep learning technique

The deep learning technique compared favorably to six other methods²:

SEGMENT ARCHITECTURE

- The epithelium segments contain the classification information.
- Bounding box for epithelium found.
- Epithelium re-oriented by medial ax1s
- Divide along axis to find vertical

CLASSIFIER FEATURES


Label	Description					
F1	Contrast of segment: Intensity contrast between a pixel and its neighbor over the segment image.					
F2	Energy of segment: Squared sum of pixel values in the segment image.					
F3	Correlation of segment: How correlated a pixel is to neighbors over the segment image.					
F4	Segment homogeneity: Closeness of the distribution of pixels in the segment image to the diagonal elements.					
F5, F6	Contrast of GLCM: Local variation in GLCM in horizontal and vertical directions					
F7, F8	Correlation of GLCM: Joint probability occurrence (periodicity) of elements in the segment image in the horizonta and vertical directions					
F9, F10	Energy of GLCM: Sum of squared elements in the GLCM in horizontal and vertical directions.					
F11	Acellular ratio: Proportion of object regions within segment image with light pixels (acellular).					
F12	Cytoplasm ratio: Proportion of object regions within segment image with medium pixels (cytoplasm).					
F13	Nuclei ratio: Proportion of object regions within segment image with dark pixels (nuclei).					
F14	Average nucleus area: Ratio of total nuclei area over total number of nuclei					
F15	Background to nuclei area ratio: Ratio of total background area to total nuclei area					
F16	Intensity ratio: Ratio of average light area image intensity to background intensity					
F17	Ratio R: Ratio of average light area red to background red					
F18	Ratio G: Ratio of average light area green to background green					
F19	Ratio B: Ratio of average light area blue to background blue					
F20	Luminance ratio: Ratio of average light area luminance to background luminance					
F21	Ratio light area: Ratio of light area to total area					
F22	Light area to background area ratio: Ratio of total light area to background area					
F23	Ratio acellular number to nuclei number: Ratio of number of light areas to number of nuclei					
F24	Ratio acellular area to nuclei area: Ratio of total light area to total nuclei area					
F25	Triangles in top layer: Number of triangles in top layer					
F26	Triangles in mid layer: Number of triangles in middle layer					
F27	Triangles in bottom layer: Number of triangles in bottom layer					

- Multi-scale convolutional neural network (MSCNN-GC)
- Generalized LaPlacian of Gaussian (gLoG)
- Ellipse voting
- Stacked sparse auto-encoder (SSAE)
- Multi-scale transform adaptive transform (MATDK)
- Scale-selection, adaptive (SSDCVR-CNN)

Study	# Nuclei	Precision	Recall	Fl	JAC
MSCNN- GC	13749	83.86	87.09	85.42	74.67
gLoG	13749	88.55	83.77	86.00	75.58
Ellipse Voting	13749	88.00	84.25	86.02	75.67
SSAE	750000	88.84	82.85	85.74	75.04
MATDK	3381	80.02	88.11	83.87	72.22
SSDCVR- CNN	4748	76.14	89.86	82	70.12
Current	108635	97.62	98.43	98.02	96.13

CONCLUSIONS

segments I_1 - I_{10}

Vertical segments of epithelium

Image processing can detect critical cellular

features for automatic pre-cancer classification^{1,2}.

References

1. Sornapudi S, Stanley RJ, Stoecker WV, Almubarak H, Long R, Antani S, Thoma G, Zuna R, Frazier SR. Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels. J Pathol Inform. 2018 Mar 5;9:5.

2. Guo P, Banerjee K, Joe Stanley R, Long R, Antani S, Thoma G, Zuna R, Frazier SR, Moss RH, Stoecker WV. Nuclei-Based Features for Uterine Cervical Cancer Histology Image Analysis With Fusion-Based Classification. IEEE J Biomed Health Inform. 2016 Nov;20(6):1595-1607

Department of Electrical and Computer Engineering

S&A Technologies