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Abstract
Data-driven deep learning (DL) methods using convolutional neural networks (CNNs)
demonstrate promising performance in natural image computer vision tasks. However,
using these models in medical computer vision tasks suffers from several limitations,
viz., (i) adapting to visual characteristics that are unlike natural images; (ii) modeling
random noise during training due to stochastic optimization and backpropagation-based
learning strategy; (iii) challenges in explaining DL black-box behavior to support
clinical decision-making; and (iv) inter-reader variability in the ground truth (GT)
annotations affecting learning and evaluation. This study proposes a systematic
approach to address these limitations for COVID-19 detection using chest X-rays
(CXRs). Specifically, our contribution benefits from (i) pretraining specific to CXRs in
transferring and fine-tuning the learned knowledge toward improving COVID-19
detection performance; (ii) using ensembles of the fine-tuned models to further improve
performance compared to individual constituent models; (iii) performing statistical
analyses at various learning stages to validate our claims; (iv) interpreting learned
individual and ensemble model behavior through class-selective relevance mapping
(CRM)-based region of interest (ROI) localization; (v) analyzing inter-reader variability
and ensemble localization performance using Simultaneous Truth and Performance
Level Estimation (STAPLE) methods. We observe that: (i) ensemble approaches
improved classification and localization performance; and, (ii) inter-reader variability
and performance level assessment helped guide algorithm design and parameter
optimization. To the best of our knowledge, this is the first study to construct
ensembles, perform ensemble-based disease ROI localization, and analyze inter-reader
variability and algorithm performance for COVID-19 detection in CXRs.

Introduction 1

Coronavirus disease 2019 (COVID-19) is caused by the new Severe Acute Respiratory 2

Syndrome Coronavirus 2 (SARS-CoV-2) that originated in Wuhan, China. The World 3

Health Organization (WHO) declared this disease spread as an ongoing pandemic [1]. 4

As of July 6, 2020, the pandemic has resulted in over 11 million cases, and more than 5
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530,000 deaths worldwide and continues to grow unabated. The disease commonly 6

infects the lungs and results in pneumonia-like symptoms [2]. Reverse 7

transcription-polymerase chain reaction (RT-PCR) analysis is the gold standard to 8

confirm infections. However, these tests are reported to exhibit varying sensitivity and 9

are not widely available [2]. Radiological imaging using chest X-rays (CXRs) and 10

computed tomography (CT) scans, though not currently recommended in the United 11

States, are commonly used radiological diagnostic support aids to manage COVID-19 12

disease progression [2]. While CT scans are more sensitive in detecting pulmonary 13

disease manifestations than CXRs, their use is limited due to issues such as 14

cross-contamination, non-portability, repeated sanitation requirements for CT 15

examination rooms, and equipment, and exposing patients under investigation (PUI), 16

hospital staff and technical personnel to the infection. Following the American College 17

of Radiology (ACR) recommendations [3], CXRs are considered a viable alternative to 18

CT scans in addressing some of these limitations. However, the pandemic nature of the 19

disease has compounded the existing shortage of expert radiologists, particularly in 20

third-world countries [4]. Under these circumstances, artificial intelligence (AI) driven 21

computer-aided diagnostic (CADx) tools have been considered as potentially viable 22

alternatives for facilitating swift patient referrals or aiding appropriate medical care [5]. 23

Several studies using data-driven deep learning (DL) algorithms with convolutional 24

neural network (CNN) models in various strategies have been published for detecting, 25

localizing, or measuring progression of COVID-19 using CXRs and CTs [4] [6, 7]. While 26

there are scores of medical imaging CADx solutions that use DL approaches for disease 27

detection including COVID-19, there are significant limitations in existing approaches 28

related to data set type, size, scope, model architecture, and evaluation. We address 29

these shortcomings and propose novel analyses to meet the urgent demand for 30

COVID-19 detection using CXRs. 31

Image modality-specific transfer learning 32

Existing solutions tend to be disease-specific and require retraining on a 33

large-collection of expert-annotated data to ensure use in real-world applications. 34

Generalization of these approaches is challenged by available expert-annotations, their 35

strength (i.e. weak image-level labels versus strong region of interest (ROI) localizing 36

the pathology), and necessary computation resources. Under these circumstances, 37

transfer learning strategies are commonly adopted [8] where the models are trained on a 38

large-scale selection of stock photographic images like ImageNet [9] and then fine-tuned 39

for the specific task. A problem with this approach is that the architecture and 40

hyperparameters of these pre-trained models are optimized for natural image computer 41

vision applications. In contrast, medical image collections bearing the desired pathology 42

are significantly smaller in number. Therefore, using these models for medical visual 43

analyses often results in a covariate shift and generalization issues due to the difference 44

in source and target image modalities. Medical images are distinct in their 45

characteristics such as highly localized disease ROIs, and varying appearances for the 46

same disease label and severity [10]. Under these circumstances, the transferred 47

knowledge from the natural image processing domain, while seemingly successful in 48

disease classification, may not be optimal for disease localization. Medical images 49

exhibit different visual characteristics than natural images through high intra-class 50

variability and inter-class similarity, particularly for early-stage disease. To this end, we 51

propose training DL models with suitable depth on a large-scale selection of medical 52

images of the same modality to learn relevant feature representations that can be 53

transferred and fine-tuned for related medical visual recognition tasks. Such medical 54

modality-specific transfer learning could improve DL performance and generalization by 55

learning the common characteristics of the source and target modalities. This could lead 56

to a better initialization of model parameters and faster convergence, thereby reducing 57
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computational demand, improving efficiency, and increasing opportunity for successful 58

deployment. 59

Ensemble learning 60

Data-driven DL models use non-linear methods and learn through stochastic error 61

backpropagation to perform automated feature extraction and classification. These 62

models can only scale up in performance with an increase in the amount of training 63

data and computational resources. Further, their sensitivity to the training data 64

specifics limits their generalization due to learning different sets of weights at each 65

instance of training. This stochastic learning nature results in different predictions 66

referred to as the variance error. Also, there are issues concerning bias errors due to an 67

oversimplified model that results in predictions that are different from the ground truth 68

(GT) thereby placing a higher demand on appropriate threshold selection for obtaining 69

desired performance. Ensemble learning seeks to address these issues by combining 70

predictions of multiple models and resulting in a better performance compared to that 71

of any individual constituent model [11]. There are several ensemble approaches such as 72

majority voting, averaging, weighted averaging, stacking, blending, etc. 73

ROI localization 74

Data-driven medical DL models have often been maligned for their “black box” 75

behavior, i.e., inability to make their decision-making process, which is critical for their 76

clinical use, clear. This results in an apparent opaque relationship between input and 77

predictions. This is often due to their massive architectural depth resulting in a large 78

number of model parameters and lack of decomposability into individual explainable 79

components. Further, multiple non-linear processing units perform complex data 80

transformations that can result in unpredictable behavior. This opacity is a serious 81

bottleneck in their use in deriving understandable clinical interpretations. 82

Variability in the ground truth (GT) 83

Supervised learning requires a consistent label associated with the appearance of the 84

pathology in the image. However, in medical images, these labels can vary not only for 85

disease stage and shared appearance with other diseases but also with observer 86

expertise and sensitivity to assessment demands. A new pandemic, for example, may 87

bias experts toward higher sensitivity, i.e. they will associate non-specific features with 88

the new disorder because they lack experience with relevant disease manifestation in the 89

image. Therefore, an assessment of observer variability constitutes an essential part of 90

AI-based classification and localization studies. This includes analyzing (i) inter-reader, 91

and (ii) intra-reader variability. It is reported that inter-reader variability tends to be 92

higher than intra-reader variability because multiple observers may have a different 93

opinion on the outlining disease-specific ROI depending on their expertise or personal 94

leanings toward recommending necessary clinical care [12]. Thus, inter-reader variability 95

is a serious bottleneck that may lead to misinterpretation through the “inexact” ROI 96

annotations and also affects supervised learning. Not only can this lead to a false 97

diagnosis or inability to evaluate the true benefit of accurately supplementing 98

clinical-decision making, but it places a greater burden on the number of training 99

images needed to overcome these implicit biases. Thus, it is imperative to conduct 100

inter-reader variability analysis as part of evaluating AI performance. An obvious 101

approach to overcome this challenge might be to compare a collection of annotations by 102

several radiologists using relevant clinical data. However, quantifying expert 103

performance in annotating disease-specific ROI is difficult. This persistent challenge 104

exists because of the difficulty in obtaining or estimating a known true ROI for the task 105

under study. While there exist automated tools to manage inter- and intra-reader 106

variability, these algorithms need to be assessed to warrant their suitability for the task 107

under study. Additionally, it is imperative to determine an appropriate measure for 108

comparing individual expert annotations with each other and with the AI [13]. 109
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Lack of statistical analysis 110

Results and methods in a study need to be transparently reported to accurately 111

communicate scientific discovery. Statistical analyses are critical for measuring inherent 112

data variability and their impact on AI performance. They help in evaluating claims 113

and differentiating reasonable and uncertain conclusions. Statistical reporting helps to 114

alleviate issues resulting from incorrect data mining, biased samples, overgeneralization, 115

causality, and violating the assumptions concerning analysis. However, a study of the 116

literature reveals that scientific publications are often limited in presenting statistical 117

analyses of their results [14]. 118

In this study, we address the aforementioned limitations through a stage-wise 119

systematic approach, as follows: (i) we explore the benefits of repeated CXR-specific 120

pretraining that results in learning CXR modality-specific knowledge, which can be 121

transferred and fine-tuned to improve performance toward COVID-19 detection in 122

CXRs; (ii) we compare the utility of several ImageNet-pretrained CNN models 123

truncated at their empirically determined intermediate layers to that of out-of-the-box 124

ImageNet-pretrained CNNs toward the current task; (iii) we use ensembles of fine-tuned 125

models for COVID-19 detection that are created through various strategies to improve 126

performance compared to any individual constituent model; (iv) we explain learned 127

behavior of individual CNNs and their ensembles using class-selective relevance 128

mapping (CRM)-based localization [15] tools that identify discriminative ROIs involved 129

in detecting COVID-19 viral disease manifestations; (v) we perform ensemble 130

localization to improve localization behavior and compensate for the error due to 131

neglected ROIs by individual CNNs; (vi) we perform exploratory studies to analyze 132

variability in model localization using annotations of two expert radiologists; (vii) we 133

measure statistical significance in performance metrics including Intersection over Union 134

(IoU) and mean average precision (mAP); and, (viii) we perform inter-reader variability 135

analysis using Simultaneous Truth and Performance Level Estimation (STAPLE) [13] 136

using a reference consensus annotation generated from the set of radiologists’ 137

annotations. This is compared with individual radiologist annotations and the predicted 138

disease ROI by model ensembles to provide a measure of inter-reader variability and 139

algorithm performance. To our best knowledge, this is the first study to construct 140

ensembles, perform ensemble-based disease ROI localization, and evaluate inter-reader 141

reader variability and algorithm performance toward COVID-19 detection in CXRs. 142

Related Works 143

We describe related works for various topics discussed in this study below. 144

Image modality-specific transfer learning 145

The authors of [16] demonstrated the benefits of transferring knowledge learned from 146

training on a large-scale selection of CXR images and repurposing them toward 147

tuberculosis (TB) detection. They constructed model ensembles and compared their 148

performance with individual models toward classifying CXRs as showing normal lungs 149

or TB -like manifestations. The authors of [17] proposed CXR modality-specific 150

knowledge transfer by retraining the ImageNet-pretrained CNN models on a large-scale 151

selection of CXRs collected from various institutions. This helped in improving 152

generalization of the learned knowledge that was transferred and fine-tuned to detect 153

TB disease-like manifestations in CXRs. The authors performed ensemble learning 154

using the best-performing CNNs to demonstrate better performance in classifying CXRs 155

as belonging to normal or TB-infected classes. At present, the literature on CXR 156

analysis benefiting from modality-specific knowledge transfer particularly applied to 157

detect COVID-19 viral disease manifestations is limited. This leaves room for progress 158

toward evaluating the efficacy of these methods in improving the performance toward 159
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COVID-19 detection. 160

Ensemble learning 161

The authors of [18] used model ensembles to classify CXRs as showing normal lungs 162

or TB-like radiological manifestations. It was observed that an ensemble of custom 163

CNN and ImageNet-pretrained models delivered superior classification performance 164

with an AUC of 0.99. The authors of [19] evaluated the efficacy of a stacked model 165

ensemble constructed from hand-crafted features/classifiers and DL models toward TB 166

detection in CXRs. CXRs collected from various institutions were used to improve the 167

generalization of the proposed approach. It was observed that the model ensembles 168

delivered better performance than individual constituent models in all performance 169

metrics. Ensemble learning has been applied to detect cardiomegaly in CXRs [20]. The 170

authors observed that DL model ensembles were 92% accurate as compared to 76.5% 171

accuracy obtained with hand-crafted features/classifiers. These results demonstrate the 172

superiority of ensemble learning over the traditional approach of evaluating the 173

performance with stand-alone models. Applied to COVID-19 detection in CXRs, the 174

authors of [5] iteratively pruned the DL models and constructed ensembles to improve 175

performance compared to individual constituent models. To this end, the authors 176

observed that the weighted average of iteratively pruned models demonstrated superior 177

classification performance with a 99.01% accuracy and AUC of 0.9972. Otherwise, the 178

literature available on applying ensemble learning toward COVID-19 detection in chest 179

radiographs is limited. 180

ROI localization 181

Exploratory studies in developing explainable and transparent AI solutions toward 182

clinical decision-making are crucial to developing robust solutions for clinical use. 183

Literature studies reveal several works interpreting the learned behavior of DL models 184

by highlighting pixels that impact prediction scores, with varying intensities. The 185

authors of [21] used deconvolution methods to modify the gradients that resulted in 186

qualitatively improving ROI localization. The authors of [22] inverted image 187

representations using up-CNN models to provide insights into learned feature 188

representations. The authors of [23] generated class-activation maps (CAM) by 189

mapping the prediction class scores back to the deepest convolutional layer. The 190

authors of [24] generalized the use of CAM tools and proposed gradient-weighted CAM 191

(Grad-CAM) methods that can be applied to CNNs with varying architecture. The 192

authors of [15] proposed the CRM algorithm to visualize discriminative ROIs in 193

classifying medical image modalities. The authors measured both positive and negative 194

contributions of the feature map spatial elements in the deepest convolutional layer of 195

the trained models toward making class-specific predictions. It was observed that CRM 196

methods delivered superior localization toward classifying medical imaging modalities 197

compared to CAM-based methods. Applied to the task of localizing COVID-19 viral 198

disease manifestations in CXRs and CT scans, the authors of [7] proposed a DL model 199

that learned the underlying feature representations from volumetric CT scans. It was 200

observed that the model showed better performance with an AUC of 0.96 in detecting 201

COVID-19 viral disease patterns and differentiating them from other non-COVID-19 202

pneumonia-related opacities. They used CAM-based visualization tools to localize the 203

suspicious ROIs toward detecting COVID-19 viral disease manifestations. The authors 204

of [25] proposed a custom DL model and used Grad-CAM tools to explain their 205

predictions toward COVID-19 detection. The model achieved a sensitivity of 83% in 206

detecting COVID-19 disease patterns in CXRs. The authors of [6] proposed a 207

weakly-labeled data augmentation approach to increase training data size for 208

recognizing COVID-19 viral related pneumonia opacities in CXRs. They used a 209

strategic approach to train various DL models with non-augmented and weakly-labeled 210

augmented training and evaluated their performance. It was observed that the simple 211
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addition of CXRs showing COVID-19 viral disease manifestations to weakly labeled 212

augmented training data improved performance. This study revealed that COVID-19 213

viral disease patterns have a uniquely different presentation compared to non-COVID-19 214

viral pneumonia-related opacities. The authors used Grad-CAM tools to study the 215

behavior of models trained with non-augmented and augmented data toward localizing 216

COVID-19 viral disease manifestations in CXRs. Otherwise, the literature is limited 217

concerning the use of visualization tools toward COVID-19 detection in CXRs. 218

Observer variability analysis 219

Applied to CT scans, the authors of [26] analyzed inter- and intra-radiologist 220

variability in detecting abnormal parenchymal lung manifestations on high-resolution 221

CT scans. They used the Kappa statistic to measure the degree of agreement toward 222

these analyses. A clinically acceptable agreement was observed between the radiologists, 223

but the agreement rate declined when the radiologists were not involved in the regular 224

analysis of thoracic CT scans. Another study [27] analyzed COVID-19 disease 225

manifestations in high-resolution CT scans obtained from patients at the North Sichuan 226

Medical College, Nanchong, China. They assessed inter-observer variability by having 227

CT readers repeat the data analysis at intervals of three days. A comparison of a set of 228

measurements by the same scan reader was used to assess intra-observer variability. 229

They observed the existence of significant variability in inter- and intra-observer analysis, 230

concerning the extent and density of disease spread. Applied to CXR analysis, the 231

authors of [28] performed an observational study among Russian clinicians in analyzing 232

the variability toward interpreting abnormalities in CXRs. The agreement was analyzed 233

in different scales using the Kappa statistic for a set of 50 CXRs, using different scales. 234

It was observed that there existed only a fair agreement in detecting and localizing 235

abnormalities with a Kappa value of 0.380 and 0.448, respectively. This demonstrated 236

that limited agreement on interpreting abnormalities resulted in sub-optimal population 237

screening. At present, there is no available literature on the analysis of inter- and/or 238

intra-reader variability applied to COVID-19 detection in CXRs. 239

Statistical analysis 240

The authors of [14] conducted a cross-sectional study toward analyzing the quality of 241

statistical reporting in a random selection of publications in the Journal of Physiology 242

and the British Journal of Pharmacology. The study used samples before and after the 243

publication of an editorial, suggesting measures to adopt in reporting data and 244

statistical analyses. The authors observed no evidence of change in reporting these 245

measures after the editorial publication. It is observed that 90-96% of papers were not 246

reporting statistical significance measures including p-values to identify the specific 247

groups exhibiting these statistically significant differences in performance. Appropriate 248

statistical analyses are included in the current study. 249

Materials and methods 250

Data collection 251

This retrospective study uses the following publicly available datasets: 252

i) Pediatric CXR dataset: The authors of [29] made available a collection of 5,856 253

pediatric CXRs showing normal lungs (n = 1,583or bacterial (n = 2,780) or viral 254

pneumonia (n = 1,493) disease manifestations. The data were collected from children 255

age 1 to 5 years at the Guangzhou Children’s Medical Center, China. The radiological 256

examinations were performed as a part of routine clinical care. The CXR images are 257

made available in JPEG format, and approximately 2000 × 2000 pixels resolution with 258

8-bit depth. 259

ii) RSNA CXR dataset: The authors of [30] made available a collection of 26,684 260

frontal CXRs for a Kaggle challenge. The CXRs are grouped into t normal (n = 8,851) 261
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and abnormal (n = 17,833) classes; the abnormalities include pneumonia or 262

non-pneumonia related opacities. The CXR images are made available in 1024 × 1024 263

8-bit pixels resolution and DICOM format. 264

iii) CheXpert CXR dataset: The authors of [31] made available a collection of 265

191,219 frontal CXRs showing normal lungs (n = 17,000) or other pulmonary 266

abnormalities (n = 174,219). The CXR images are collected from patients at Stanford 267

University Hospital, California, and are labeled for various thoracic disease 268

manifestations by an automated natural language processing (NLP)-based labeler. The 269

labels are extracted from radiological texts and conform to the Fleischner Society 270

glossary of terms for thoracic imaging. 271

iv) NIH CXR-14 dataset: The authors of [8] released a collection of 112,120 frontal 272

CXRs, collected from 30,805 patients at the NIH Clinical Center, Maryland. The 273

collection includes CXRs, labeled as showing pulmonary abnormalities (n = 51,708) or 274

normal lungs (n = 60,412). The CXRs were screened to remove personally identifiable 275

information (PII) and ensure patient privacy. The CXRs belonging to the abnormal 276

category are labeled for multiple thoracic disease manifestations using the information 277

extracted from radiological reports using an automated NLP-based labeling algorithm. 278

v) Twitter-COVID-19 CXR dataset: A radiologist from a hospital in Spain made 279

available a collection of 134CXRs exhibiting COVID-19 viral pneumonia manifestations, 280

on Twitter (https://twitter.com/ChestImaging). The data were collected from 281

SARS-CoV-2 PCR+ subjects and are made available at approximately 2000 ×2000 282

pixels resolution in JFIF format. 283

vi) Montreal-COVID-19 CXR dataset: The authors of [32] manage a GitHub 284

repository that hosts a collection of CXRs and computed tomography (CT) scans of 285

SARS-CoV-2 + and/or suspected patients. The images are pooled from publications 286

and hospitals through collaboration with physicians and other public resources. As of 287

May 20, 2020, the collection includes 226 CXRs showing COVID-19 viral pneumonia 288

manifestations. The authors didn’t provide complete metadata, however, the collection 289

includes CXRs of 131 male patients and 64 female patients; the average age for the 290

COVID-19 group is 58.8±14.9 years. 291

Lung ROI Cropping and preprocessing 292

Input data characteristics directly impact DL model learning, which is significant in 293

applications that involve disease detection. For example, clinical decision-making could 294

be adversely impacted by learning irrelevant features. In the case of COVID-19 and 295

other pulmonary diseases, it is vital to limit analysis to the lung ROI and train the 296

models toward learning relevant feature representations from within these pulmonary 297

zones. Literature studies reveal that U-Net-based semantic segmentation delivers 298

commendable performance in segmentation tasks using natural and medical imagery [33]. 299

For this study, we are using a custom U-Net with dropout layers to segment the lung 300

ROI from the background. Gaussian dropouts are used in the encoder, as shown in Fig 301

1, to reduce overfitting and provide restrictive regularization [34]. A dropout ratio of 0.5 302

is used after empirical pilot evaluations. The segmentation workflow is shown in Fig 2. 303

[Fig 1 about here.] 304

[Fig 2 about here.] 305

The model is trained on CXRs and their associated lung masks made available by 306

the authors of [35]. Sigmoidal activation is used at the deepest convolutional layer to 307

restrict the mask pixels to the range (0 – 1). The model is optimized to minimize a 308

combination of binary cross-entropy and dice losses. Callbacks are used to store model 309

checkpoints after each epoch. The best model weights are used for lung mask 310

generation. The model is trained to generate lung masks at 256 × 256 pixel resolution 311
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for various datasets used in this study. The lung boundaries are delineated using the 312

generated masks and are cropped to a bounding box containing the lung pixels. The 313

lung bounding boxes are resized to 256 × 256 pixel dimensions and used for further 314

analysis. The cropped lung bounding boxes are further preprocessed as follows: (i) 315

Images are normalized so that the pixel values are restricted to the range (0 – 1). (ii) 316

Images are passed through a median filter to perform noise removal and edge 317

preservation. (iii) Image pixels are centered through mean subtraction and are 318

standardized to reduce computational complexity. 319

Repeated CXR-specific pretraining 320

Fig 3 illustrates the workflow showing various stages of model training and 321

evaluation. 322

[Fig 3 about here.] 323

First, the images are preprocessed to remove irrelevant features by cropping the lung 324

ROI. The cropped images are used for model training and evaluation. We perform 325

repeated CXR-specific pretraining in transferring modality-specific knowledge that is 326

fine-tuned toward detecting COVID-19 viral manifestations in CXRs. Training proceeds 327

in a series of steps. First, the CNNs are trained on a large collection of CXRs to separate 328

normals from those showing abnormalities of any type. Next, we retrain the models 329

from the previous step, focusing on separating CXRs showing bacterial pneumonia or 330

non-COVID pneumonia from normals. Next, we fine-tune the models from the previous 331

step toward the specific separation of CXRs showing COVID-19 pneumonia from 332

normals. Finally, the learned features from these phases of training become parts of the 333

ensembles developed to optimize the detection of COVID-19 pneumonitis from CXRs. 334

The details of this step-wise approach are discussed as follows. In the first stage of 335

pretraining, a custom CNN and selected ImageNet-pretrained CNN models are 336

retrained on a large selection of CXRs with sufficient diversity due to sourcing from 337

different collections, to coarsely learn the characteristics of normal and abnormal lungs. 338

This CXR-specific pretraining helps in converting the weight layers, specific to the 339

CXRs, in subsequent steps. Table 1 shows the distribution of data used in the first 340

stage of repeated CXR-specific pretraining. 341

Table 1. Data distribution for the first stage of repeated CXR-specific pretraining. A custom CNN and a
selection of ImageNet-pretrained CNNs are retrained on a large selection of CXRs to learn CXR-specific
features to categorize them as showing normal or abnormal lungs.

Dataset Normal Abnormal
RSNA 8331 17833
CheXpert 16480 17000
NIH 59892 51708
Total 84703 86541

The motivation behind this approach is to perform a knowledge transfer from the 342

natural image domain to CXR-domain and learn the characteristics of normal lungs and 343

a wide selection of CXR-specific pulmonary disease manifestations. During this training 344

step, the datasets are split at the patient-level into 90% for training and 10% for testing. 345

We randomly allocated 10% of the training data for validation. 346

During the second stage of repeated CXR-specific pretraining, the learned knowledge 347

from the first stage pretrained models is transferred and repurposed to classify CXRs as 348

exhibiting normal lungs, bacterial pneumonia, or non-COVID-19 viral pneumonia 349

manifestations. This pretraining is motivated by the biological similarity in 350

non-COVID-19 viral and COVID-19 viral pneumonia. However, there exist distinct 351
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radiological manifestations between each other as well as with non-viral 352

pneumonia-related opacities [6] [29]. The motivation is to transfer the learned 353

knowledge and fine-tune for COVID-19 detection. Table 2 shows the datasets used and 354

their distribution for this pretraining stage. For the normal class, we pooled CXRs from 355

various collections to introduce generalization and improve model performance. During 356

this pretraining stage, again, the datasets are split at the patient-level into 90% for 357

training and 10% for testing. For validation, we randomly allocated 10% of the training 358

data. 359

Table 2. Data distribution for the second stage of repeated CXR-specific pretraining. The first-stage
pretrained models are retrained on a collection of CXRs to categorize them as showing normal lungs,
bacterial pneumonia, or non-COVID-19 viral pneumonia manifestations. Note that the pediatric CXR
dataset predates the onset of the SARS-CoV2 virus, and therefore the viral pneumonia is of
non-COVID-19 type.

Dataset Normal Bacterial pneumonia Non-COVID-19-viral pneumonia
CheXpert 400 - -
NIH 400 - -
Pediatric CXR 1583 2780 1493
RSNA 400 - -
Total 2783 2780 1493

Fine-tuning for COVID-19 detection 360

The learned knowledge from the second stage of pretraining is transferred and 361

fine-tuned to improve performance in classifying CXRs as showing normal lungs or 362

COVID-19 viral pneumonia disease manifestations. Table 3 shows the datasets used and 363

their distribution toward this fine-tuning stage. We compare this performance to that 364

without repeated CXR-specific pretraining, referred to as Baseline, where the 365

ImageNet-pretrained CNNs are retrained out-of-the-box to categorize the CXRs as 366

showing normal lungs or COVID-19 viral disease manifestations. For the normal class, 367

we pooled CXRs in a patient-specific manner from various collections to introduce 368

generalization and improve model performance. During this training step, we performed 369

a patient-level split of the train and test data as follows: The CXRs from the 370

Montreal-COVID-19 and Twitter-COVID-19 collections are combined (n = 360) where 371

n is the total number of images in the collection. The data is split at the patient-level 372

into 80% for training and 20% for testing. We randomly allocated 10% of the training 373

data for validation. The test set includes 72 CXRs, containing 36 CXRs each from the 374

Montreal-COVID-19 and Twitter-COVID-19 collections. 375

The GT disease annotations for this test data are set by the verification of publicly 376

identified cases from two expert radiologists, referred to as Rad-1 and Rad-2 hereafter, 377

with a combined experience of 60 years. The radiologists used the web-based VGG 378

Image Annotator tool [36] to independently annotate the COVID-19 viral 379

disease-specific ROI in the test collection. The radiologists were shown the chest 380

radiographs in Portable Network Graphics format with a spatial resolution of 1024 × 381

1024 pixels and were asked to annotate COVID-19 viral disease-specific ROI in the 382

given test set. 383

Data augmentation 384

It is well known that large amounts of high-quality data are imperative for DL 385

model training and achieving superior performance. A challenge in the medical 386

image-based DL is the lack of sufficient data. Many studies limit their work to data 387

sourced from a single site. Using limited, single-site data toward model training may 388

result in loss of generalizability and degrade model performance when evaluated on 389

unseen data from other institutions or diverse imaging practices. Under these 390
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Table 3. Data distribution for COVID-19 detection. The second-stage pretrained models are fine-tuned to
classify CXRs into showing normal lungs or COVID-19 viral patterns.

Dataset COVID-19+ Normal
CheXpert - 120
Montreal-COVID-19 226 -
NIH - 120
RSNA - 120
Twitter-COVID-19 134 -
Total 360 360

circumstances, generalizability and performance could be improved by increasing the 391

variability of training data. In this study, we use a diversified data distribution from 392

multiple CXR collections to enhance model generalization and performance in repeated 393

CXR-specific pretraining and fine-tuning stages. Class weights are used to reward the 394

minority classes to prevent biasing error and reduce overfitting. During model training, 395

data are augmented with random horizontal and vertical pixel shifts in the range (-5 –to 396

5) and rotations in the degree range (-9 –to 9). 397

Models 398

The following CNN-based DL models are trained and evaluated at various stages of 399

learning performed in this study: (i) a custom wide-residual network (WRN) [37] with 400

dropout, (ii) ResNet-18 [38], (iii) VGG-16 [39], (iv) VGG-19 [39], (v) Xception [40], (vi) 401

Inception-V3 [41], (vii) DenseNet-121 [42], (viii) MobileNet-V2 [43], (ix) 402

NasNet-Mobile [44]. The models are selected with an idea of increasing the architectural 403

diversity, thereby increasing the representation power, when used in ensemble learning. 404

All computation is done on a Windows
®

system with Intel Xeon CPU E3-1275 v6 3.80 405

GHz processor and NVIDIA GeForce
®

GTX 1050 Ti. We used Keras DL framework 406

with Tensorflow backend, CUDA, and CUDNN libraries to accelerate GPU performance. 407

Residual CNNs having depths of hundreds of layers suffer from diminishing feature 408

reuse [37]. This occurs due to issues with gradient flow, which results in only a few 409

residual blocks learning useful feature representations. A WRN model combats 410

diminishing feature reuse issues by reducing the number of layers and increasing model 411

width [37]. The resultant networks are found to exhibit shorter training times with 412

similar or improved accuracy. In this study, we use a custom WRN with dropout 413

regularization. Dropouts provide restrictive regularization, address overfitting issues, 414

and enhance generalization. After empirical observations, we used 5 × 5 kernels for the 415

convolutional layers, assigned a dropout ratio of 0.3, a depth of 16, and a width of 4, for 416

the custom WRN used in this study. The resultant architecture is referred further to as 417

custom WRN. Fig 4 shows a WRN block with dropout used in this study. The output 418

from the deepest residual block is average pooled, flattened, and appended to a final 419

dense layer with Softmax activation to predict class probabilities. 420

[Fig 4 about here.] 421

As mentioned before, ImageNet-pretrained CNNs have been developed for computer 422

vision tasks with natural images. These models have varying depth and learn diversified 423

feature representations. For medical images that are often available in limited 424

quantities, deeper models may not be optimal and can lead to overfitting and loss of 425

generalization. During the first stage of pretraining, the CNNs are instantiated with 426

July 15, 2020 10/50

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2020. .https://doi.org/10.1101/2020.07.15.20154385doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.15.20154385
http://creativecommons.org/licenses/by-nc-nd/4.0/


their ImageNet-pretrained weights and are truncated at empirically determined 427

intermediate layers to effectively learn the underlying feature representations for CXR 428

images and improve classification performance. The truncated models are appended 429

with (i) zero-padding, (i) a 3 × 3 convolutional layer with 1024 feature maps, (ii) a 430

global average pooling (GAP) layer, (iii) a dropout layer with an empirically determined 431

dropout ratio of 0.5, and (iv) a final dense layer with Softmax activation to output 432

prediction probabilities. These customized models learn CXR-specific feature 433

representations to classify CXR images into normal and abnormal. The custom WRN is 434

initialized with random weights. Fig 5 shows the architecture of the pretrained CNNs 435

used during the first stage of CXR-specific pretraining. 436

[Fig 5 about here.] 437

In the second stage, pretrained models from the first stage are truncated at their 438

deepest convolutional layer and appended with (i) GAP layer, (ii) dropout layer (ratio 439

= 0.5), and (iii) dense layer with Softmax activation to output class probabilities for 440

normal, bacterial pneumonia, and non-COVID-19 viral pneumonia. Fig 6 shows the 441

architecture of the customized models used during the second stage of pretraining. 442

[Fig 6 about here.] 443

Next, the second-stage pretrained models are truncated at their deepest 444

convolutional layer and appended with (i) GAP layer, (ii) dropout layer (ratio = 0.5), 445

and (iii) dense layer with Softmax activation. The resultant models are fine-tuned to 446

classify the CXRs as belonging to COVID-19+ or normal classes where ‘+’ symbolizes 447

COVID-19-positive cases. Fig 7 shows the architecture of the models used toward 448

COVID-19 detection. The models in various learning stages are trained and evaluated 449

using stochastic gradient descent optimization to estimate learning error and 450

classification performance. We used callbacks to check the internal states of the models 451

and store model checkpoints. The model weights delivering superior performance with 452

the test data are used for further analysis. 453

[Fig 7 about here.] 454

The performance of the models at various learning stages is evaluated using the 455

following metrics: (i) Accuracy; (ii) Area under curve (AUC); (iii) Sensitivity; (iv) 456

Specificity; (v) Precision; (vi) F1 score; (vii) Matthews correlation coefficient (MCC); 457

(viii) Kappa statistic; and (ix) Diagnostic Odds Ratio (DOR). 458

Ensemble Learning 459

The following ensemble strategies are applied to the fine-tuned models for COVID-19 460

detection to improve performance: (i) Majority voting; (ii) Simple averaging; and (iii) 461

Weighted averaging. In majority voting, the predictions with maximum votes are 462

considered as final predictions. The average of the individual model predictions is 463

considered the final prediction in a simple averaging ensemble. For a weighted ensemble, 464

we optimized the weights for the model predictions that minimized the total logarithmic 465

loss. This loss decreases as the prediction probabilities converge to true labels. We used 466

the Sequential Least Squares Programming (SLSQP) algorithmic method [45] to 467

perform several iterations of constrained logarithmic loss minimization to converge to 468

the optimal weights for the model predictions. 469

Inter-reader variability analysis 470

Fig 8 shows examples of COVID-19 viral disease-specific ROI annotations on CXRs 471

made by Rad-1 and Rad-2. In this study, we used the well-known STAPLE algorithm to 472

arrive at a consensus reference annotation and use it to evaluate the performance of the 473

top-N ensembles and to simultaneously assess the performance against each radiologist. 474
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[Fig 8 about here.] 475

STAPLE methods are widely used in validating image segmentation algorithms and 476

comparing the performance of experts. Segmentation solutions are treated as a response 477

to a pixel-wise classification problem. The algorithm uses an expectation-maximization 478

(EM) approach that computes a probabilistic estimate of a reference segmented image 479

computed from a collection of expert annotations and weighing them by an estimated 480

level of performance for each expert. It incorporates this knowledge to spatially 481

distribute the segmented structures while satisfying homogeneity constraints. The 482

algorithm is summarized as follows: Let Q = (q1, q2, . . . ., qn)N and R = (r1, r2, . . . ., 483

rn)N denote two column vectors, each containing A elements. The elements in Q and R 484

represent sensitivity and specificity parameters, respectively, characterizing one of N 485

segmentations. Let D denote an M × N matrix that describes segmentation decisions 486

made for each image pixel. Let N denote an indicator vector containing M elements 487

representing hidden, true binary segmentation values. The complete data can be written 488

as (D, N) and the probability mass function as f (D, N|q, r). The performance level of 489

the experts, characterized by a tuple (q, r) is estimated by the EM algorithm, which 490

maximizes (q’, r’), the data log-likelihood function, given by, 491

(q′, r′ ) = argmaxq,rln(f(D, N |q, r)) (1)

We used the following measures including Kappa statistic, sensitivity, specificity, 492

positive predictive value (PPV), and negative predictive value (NPV) to analyze 493

inter-reader variability and assess program performance. We used the 494

STAPLE-generated consensus ROI as to the standard reference and measured its 495

agreement with that generated by the top-N ensembles and the annotations of Rad-1 496

and Rad-2. We propose an algorithm to determine the set of True Positive (TP), False 497

Positive (FP), True Negative (TN), and False Negative (FN) for different IoU 498

thresholds in the range (0.1 – 0.7). The IoU evaluation metric, also called the Jaccard 499

Index, is widely used in object detection, given by a ratio as shown below: 500

IoU (Jaccard Index) =
Area of overlap

Area of union
(2)

where Area of overlap measures the overlap between ROI annotations and Area of union 501

denotes their total combined area. An annotated ROI provided by a given radiologist or 502

that predicted by the top-N ensemble is considered as a TP if the IoU with the 503

STAPLE-generated consensus ROI is greater than or equal to a given IoU threshold. 504

Each radiologist or top-N ensemble predicted ROI that produces an IoU less than the 505

threshold or falls outside the consensus ROIs is counted as FP. The FN is defined as a 506

radiologist ROI or that predicted by the top-N ensemble that is completely missing 507

when there is an ROI in the consensus ROI. If there is an image with no ROIs on both 508

the masks under test, then we consider it as TN. The values are determined at 509

ROI-level per image and summed to calculate the Kappa statistic given by, 510

Kappa = 1− 1− po
1− pe

(3)

where po is the measure of relative observed agreement and pe denotes the agreement 511

through the hypothetical probability of chance. The values of po and pe are computed 512

as follows: 513

po =
(TP + TN)

TP + FN + FP + TN
(4)

pe =
p_true

p_false
(5)
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p_true =
(TP + FN) (FP + TP )

(TP + FN + FP + TN)
2 (6)

p_false =
(FP + TN) (FN + TN)

(TP + FN + FP + TN)
2 (7)

The sensitivity, specificity, PPV, and NPV parameters are defined as, 514

Sensitivity =
TP

FN + TP
(8)

Specificity =
TN

FP + TN
(9)

PPV =
TP

FP + TP
(10)

NPV =
TN

FN + TN
(11)

Kappa values of 1 and 0 denote complete agreement and disagreement (other than 515

occurring by chance) among the readers, respectively. The value of Kappa becomes 516

negative if the agreement gets worse than random. The algorithm for measuring 517

inter-reader variability is given in Table 4, where m1, m2, and mp denote the ROI 518

annotations of Rad-1, Rad-2, and that predicted by the top-N ensemble, respectively. 519

Disease ROI Localization 520

In this study, we use the CRM [15] visualization method to interpret the learned 521

behavior of individual models and their ensembles in localizing COVID-19 viral 522

disease-specific ROI manifestations. CRM has been shown to deliver better localization 523

performance than class-activation mapping (CAM)-based visualization. CRM-based 524

localization considers the fact that a feature map spatial element from the trained 525

model’s deepest convolution layer would not only contribute to increasing the prediction 526

score for an expected class but also decreasing the score for other class outputs. This 527

helps in maximizing the gap between the scores for various classes. The process results 528

in highly-discriminative ROI localization since it uses incremental mean-squared error 529

(MSE) measured from the output nodes. We construct an ensemble of CRMs by 530

averaging those generated from various fine-tuned models for COVID-19 detection. The 531

size of CRMs from individual models is up-scaled to the size of the image input through 532

a normalization process. This is because the CRMs vary in size depending on the 533

feature map dimensions from the deepest convolutional layers of the individual models. 534

Based on empirical observations, the CRMs are thresholded to remove mapping scores 535

below 20% to alleviate noise resulting from low mapping scores when constructing CRM 536

ensembles. The resulting ensemble CRM localization is expected to compensate for the 537

error of missed ROI by individual models and enhance COVID-19 disease ROI 538

localization. 539

We evaluate the effectiveness of CRM-based ensemble localization through the 540

following steps. First, we use CRM-based ROI localization in interpreting the 541

predictions of individual CNNs and compare against the GT annotations provided by 542

each of the two experts. Next, we select the top-3, top-5, and top-7 performing models, 543
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Table 4. Algorithm to assess inter-reader variability and program performance.

Algorithm
1: Input: Data

(
m1,m2,mp

}
, Threshold thr

2: for i = 0, 1, 2, . . . , N  do
3: mref

i = staple(m1
i ,m

2
i )

4: if (mref
i orm1

i /m2
i /m

p
i ) contains ROIs then

5: forROIj in m1
i /m2

i /m
p
i  do

6: forROIk in mref
i  do

7: metric = IOU(ROIj , ROIk)
8: if  metric ≥ thr then
9: T P ← T P + 1
10: elseif  0 < metric < thr or missing ROIk then 
11: F P ← F P + 1
12: else if missing ROIj  then
13: FN ← FN + 1
14: else
15: T N ← T N + 1
16: end for
17: p0 = T P+TN

TP+FP+FN+TN

18: pe =
(TP+FN)(TP+FP )+(FP+TN)(FN+TN)

(TP+FP+FN+TN)2
19: Kappa = 1− 1−po

1−pe

20: Sensitivity = TP
FN+TP

21: Specificity = TN
FP+TN

22: PPV = TP
FP+TP

23: NPV = TN
FN+TN

24: Output:Kappa, Sensitivity, Specificity, PPV, and NPV

construct ensemble CRMs through an averaging process and compare against each 544

radiologists’ independent annotations, and the STAPLE-generated consensus 545

annotation. Finally, we quantitatively compare the ensemble localization performance 546

with each other and against individual CRMs in terms of IoU and mean average 547

precision (mAP) metrics. The mAP score is calculated by taking the mean of average 548

precision (AP) over various IoU thresholds [46]. 549

Statistical Analysis 550

Statistical tests are conducted to determine significance in performance differences 551

between the models. We used confidence intervals (CI) to measure model discrimination 552

capability and estimate its precision through the error margin. We measured 95% CI as 553

the exact Clopper–Pearson interval for the AUC values obtained by the models in 554

various learning stages. Statistical packages including StatsModels and SciPy are used 555

in these analyses. We performed a one-way analysis of variance (ANOVA) [47] on mAP 556

values obtained with the top-N (N = (3, 5, 7)) ensemble to study their localization 557

performance and determine statistical significance among them and against the 558

annotations of each of the radiologist and also the STAPLE-generated consensus 559

annotation. One-way ANOVA tests are performed only if the assumptions of data 560

normality and homogeneity of variances are satisfied for which we performed 561

Shapiro-Wilk and Levene’s analyses [47]. Statistical analyses are performed using R 562

statistical software (Version 3.6.1). 563
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Results 564

Recall that in the first stage of CXR-specific pretraining, we truncated the 565

ImageNet-pretrained CNNs at their intermediate layers to empirically determine the 566

layers that demonstrated superior performance. These empirically determined layers for 567

the various models are shown in Table 5. 568

Table 5. Candidate CNN layers delivering superior classification performance during the first stage of
CXR-specific pretraining.

Model Truncated layers
VGG-16 Block5-conv3
VGG-19 Block5-conv4
Inception-V3 Mixed3
Xception Add_3
DenseNet-121 Pool3-pool
MobileNet-V2 Block_9_add
NASNet-mobile Activation_94
ResNet-18 Add_6

The naming conventions for the layers are based on the Keras DL framework. The 569

performance achieved through truncating the models at the selected intermediate layers 570

and appending task-specific heads toward classifying the CXRs is shown in Table 6. 571

Table 6. Performance metrics achieved during the first-stage of CXR-specific pretraining. The custom WRN
is initialized with random weights. Data in parenthesis are 95% CI for the AUC values measured as the exact
Clopper–Pearson interval corresponding to separate 2-sided CI with individual coverage probabilities of

√
0.95. (Acc. =

Accuracy, AUC = Area under curve, Sens. = Sensitivity, Spec. = Specificity, Prec. = Precision, F1 = F1 score, MCC =
Matthews correlation coefficient, DOR = Diagnostics odd ratio). Bold numerical values denote best performances in the
respective columns. None of these individual differences are statistically significant.

Models Acc. AUC (CI) Sens. Spec. Prec. F 1 MCC Kappa DOR
Custom WRN 0.6696 0.722 (0.7153, 0.7287) 0.6566 0.6828 0.6763 0.6663 0.3395 0.3393 4.12
VGG-16 0.6874 0.7397 (0.7331, 0.7463) 0.6641 0.711 0.6988 0.6810 0.3755 0.3750 4.87
VGG-19 0.6913 0.7435 (0.7374,

0.7506)
0.6651 0.7178 0.704 0.6840 0.3833 0.3827 5.06

Inception-V3 0.6842 0.7375 (0.7309, 0.7441) 0.6186 0.7506 0.7145 0.6631 0.3723 0.3689 4.89
Xception 0.6727 0.7287 (0.7220, 0.7354) 0.6364 0.7094 0.6885 0.6614 0.3466 0.3456 4.28
DenseNet-121 0.6827 0.7416 (0.7350, 0.7482) 0.7589 0.606 0.6603 0.7062 0.3692 0.3650 4.85
NasNet-
Mobile

0.6820 0.7347 (0.7281, 0.7413) 0.5802 0.7849 0.7313 0.6471 0.3728 0.3647 5.05

MobileNet-V2 0.6844 0.7426 (0.7360, 0.7492) 0.7007 0.668 0.6805 0.6904 0.3688 0.3686 4.72
ResNet-18 0.6821 0.7338 (0.7272, 0.7404) 0.7307 0.6332 0.6679 0.6979 0.3657 0.3640 4.69

From Table 6, we observe that the AUC values are not statistically significantly 572

different across the models (p > 0.05). The DOR provides a measure of diagnostic 573

accuracy and estimation of discriminative power. A high DOR is obtained by a model 574

that exhibits high sensitivity and specificity with low FPs and FNs. Considering AUC 575

and DOR values, VGG-19 demonstrates better performance followed by NasNet-Mobile 576

in classifying CXRs into normal and abnormal categories. A model with higher AUC 577

indicates that it is more capable of distinguishing TNs and TPs. Also considering MCC 578

and Kappa statistic metrics, VGG-19 outperformed other models. The confusion matrix, 579

July 15, 2020 15/50

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2020. .https://doi.org/10.1101/2020.07.15.20154385doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.15.20154385
http://creativecommons.org/licenses/by-nc-nd/4.0/


ROC curves, and normalized Sankey flow diagram obtained using the VGG-19 model 580

toward this classification task are shown in Fig 9. 581

[Fig 9 about here.] 582

We used a normalized Sankey diagram [48] to visualize model performance. Here, 583

weights are assigned to the classes on the truth (left) and prediction (right) side of the 584

diagram to provide an equal visual representation for the classes on either side. The 585

strips width changes across the plot so that the width of each at the right side 586

represents the fraction of all objects which the model predicts as belonging to a category 587

that truly belongs to each of the categories. 588

Recall that during the second stage of CXR-specific pretraining, the learned 589

representations from the first-stage pretrained models are transferred and fine-tuned to 590

classify CXRs as showing normal lungs, bacterial proven pneumonia, or non-COVID-19 591

viral pneumonia. The performance achieved by the second-stage pretrained models is 592

shown in Table 7. 593

Table 7. Performance metrics achieved by the models during the second stage of CXR-specific
pretraining.Bold numerical values denote best performances in the respective columns. None of these individual differences
are statistically significant.

Models Acc. AUC (CI) Sens. Spec. Prec. F 1 MCC Kappa DOR
Custom WRN 0.7007 0.8589 (0.8332, 0.8846) 0.7007 0.8068 0.74 0.671 0.5326 0.5136 9.78
VGG-16 0.8879 0.9735 (0.9616, 0.9854) 0.8879 0.9298 0.896 0.8773 0.8312 0.8214 104.91
VGG-19 0.8922 0.9739 (0.9621, 0.9857) 0.8922 0.9304 0.906 0.8825 0.8389 0.8281 110.64
Inception-V3 0.9135 0.9792 (0.9699, 0.9895) 0.9135 0.9518 0.9120 0.9110 0.8656 0.8644 180.97
Xception 0.905 0.9714 (0.9590, 0.9838) 0.905 0.943 0.9064 0.9017 0.8532 0.8503 157.61
DenseNet-121 0.9177 0.9835 (0.9740,

0.9930)
0.9177 0.9519 0.9187 0.9141 0.8736 0.8704 220.68

NasNet-
Mobile

0.9163 0.9819 (0.9720, 0.9918) 0.9163 0.9477 0.9222 0.9106 0.8674 0.8674 198.38

MobileNet-V2 0.9121 0.9812 (0.9711, 0.9913) 0.9121 0.952 0.9113 0.9098 0.8637 0.8621 205.81
ResNet-18 0.8936 0.9738 (0.9620, 0.9856) 0.8936 0.9329 0.8997 0.8849 0.8383 0.8309 116.77

We observed no statistically significant difference in AUC values achieved with the 594

models during this pretraining stage (p > 0.05). Considering DOR, DenseNet-121 595

demonstrated better performance (220.68) followed by MobileNet-V2 (205.81) in 596

categorizing the CXRs as showing normal lungs, bacterial pneumonia, or non-COVID-19 597

viral pneumonia. Considering MCC and F1 score metrics that consider sensitivity and 598

precision to determine model generalization, DenseNet-121 outperformed other models. 599

The confusion matrix, ROC curves, and normalized Sankey flow diagram obtained using 600

the DenseNet-121 model toward this classification task are shown in Fig 10. 601

[Fig 10 about here.] 602

The second stage pretrained models are truncated at their deepest convolutional 603

layer, appended with task-specific heads, and fine-tuned to classify the CXRs as 604

belonging to COVID-19+ or normal categories. Table 8 shows the performance metrics 605

achieved by the models toward this task. 606

We observed no statistically significant difference in AUC values (p > 0.05) achieved 607

by the fine-tuned models. Considering DOR, ResNet-18 demonstrated better 608

performance (83.2) followed by DenseNet-121 (51.54) in categorizing the CXRs as 609

showing normal lungs or manifesting COVID-19 viral disease. The custom WRN, 610
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Table 8. Performance metrics achieved with fine-tuning the second-stage pretrained models for COVID-19
detection.Bold numerical values denote best performances in the respective columns. Overall, ResNet-18 showed the best
performance but individual metrics are not statistically different from other models.

Models Acc. AUC (CI) Sens. Spec. Prec. F 1 MCC Kappa DOR
D-WRN 0.8333 0.9043 (0.8562, 0.9524) 0.9028 0.7639 0.7927 0.8442 0.6732 0.6667 30.06
VGG-16 0.8681 0.9302 (0.8885, 0.9719) 0.8473 0.8889 0.8841 0.8653 0.7368 0.7361 44.4
VGG-19 0.8611 0.9176 (0.8726, 0.9626) 0.9028 0.8195 0.8334 0.8667 0.7248 0.7222 42.17
Inception-V3 0.8611 0.9123 (0.8660, 0.9586) 0.9028 0.8195 0.8334 0.8667 0.7248 0.7222 42.17
Xception 0.8681 0.9297 (0.8879, 0.9715) 0.8334 0.9028 0.8956 0.8634 0.7379 0.7361 46.47
DenseNet-121 0.875 0.9386 (0.8993, 0.9779) 0.9028 0.8473 0.8553 0.8784 0.7512 0.75 51.54
NasNet-
Mobile

0.8542 0.911 (0.8644, 0.9576) 0.8612 0.8473 0.8494 0.8552 0.7085 0.7083 34.43

MobileNet-V2 0.875 0.925 (0.8819, 0.9681) 0.8473 0.9028 0.8971 0.8715 0.7512 0.75 51.54
ResNet-18 0.8958 0.9490 (0.9132,

0.9854)
0.8612 0.9306 0.9254 0.8921 0.7936 0.7917 83.2

Inception-V3, and DenseNet-121 are found to be equally sensitive (0.9028) toward this 611

classification task. However, the ResNet-18 fine-tuned model demonstrated better 612

performance with other performance metrics including accuracy, AUC, specificity, 613

precision, F1 score, MCC, and Kappa statistic. The confusion matrix, ROC curves, and 614

normalized Sankey flow diagram obtained using the ResNet-18 model toward this 615

classification task are shown in Fig 11. 616

[Fig 11 about here.] 617

Feature embedding visualization 618

We visualized the deepest convolutional layer feature embedding for the ResNet-18 619

fine-tuned model, using the t-Distributed Stochastic Neighbor Embedding (t-SNE) 620

algorithm [49]. We used t-SNE to visualize the embedding of the 1024-dimensional 621

feature space into 2 dimensions, as shown in Fig 12. It is observed that the feature 622

space for the normal and COVID-19+ classes is well-separated and clustered to 623

facilitate the classification task. 624

[Fig 12 about here.] 625

The performance obtained with the fine-tuned models is compared to the Baseline, 626

as shown in Table 9. The Baseline refers to out-of-the-box ImageNet-pretrained CNNs 627

that are retrained toward this classification task. The custom WRN is initialized with 628

randomized weights for the Baseline task. 629

As observed in Table 9, the fine-tuned models achieved better performance compared 630

to their baseline counterparts. The AUC metrics achieved with the fine-tuned custom 631

WRN, VGG-16, VGG-19, and NasNet-Mobile models are observed to be statistically 632

significantly different (p < 0.05) compared to their baseline, untuned counterparts. We 633

observed a marked reduction in the number of trainable parameters for the fine-tuned 634

models. The fine-tuned DenseNet-121 model showed a 54.51% reduction in the number 635

of trainable parameters while delivering better performance as compared to its baseline 636

counterpart. The same holds true for ResNet-18 (46.05%), Inception-V3 (42.36%), 637

Xception (37.57%), MobileNet-V2 (37.38%), and NasNet-Mobile (11.85%) with the 638

added benefit of improved performance compared to their baseline models. 639

ROI visualization 640

We performed visualization studies to compare how the fine-tuned models and their 641

baseline counterparts localize the ROIs in a CXR manifesting COVID-19 viral patterns. 642
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Table 9. Performance metrics achieved during fine-tuning the second-stage pretrained models for
COVID-19 detection is compared with theBaseline . The Baseline refers to retraining out-of-the-box
ImageNet-pretrained CNNs toward this task. Bold numerical values show a reduction in the number of parameters.

Mod-
els

Method Acc. AUC (CI) Sens. Spec. Prec. F 1 MCC Kappa DOR Para.
Reduction (%)

Cus-
tom
WRN

Baseline 0.7897 0.8014 (0.7362,
0.8666)

0.6742 0.8675 0.8396 0.7478 0.5611 0.5433 14.34 -

Fine-
tuned

0.8333 0.9043 (0.8562,
0.9524)

0.9028 0.7639 0.7927 0.8442 0.6732 0.6667 30.06 0

VGG-
16

Baseline 0.7708 0.7993 (0.7338,
0.8648)

0.6667 0.875 0.8422 0.7442 0.5539 0.5416 14.01 -

Fine-
tuned

0.8681 0.9302 (0.8885,
0.9719)

0.8473 0.8889 0.8841 0.8653 0.7368 0.7361 44.4 0

VGG-
19

Baseline 0.7847 0.8176 (0.7545,
0.8807)

0.8334 0.7362 0.7595 0.7948 0.5722 0.5694 13.97 -

Fine-
tuned

0.8611 0.9176 (0.8726,
0.9626)

0.9028 0.8195 0.8334 0.8667 0.7248 0.7222 42.17 0

Inception-
V3

Baseline 0.8472 0.9285 (0.8864,
0.9706)

0.8473 0.8473 0.8473 0.8473 0.6945 0.6944 30.79 -

Fine-
tuned

0.8611 0.9123 (0.8660,
0.9586)

0.9028 0.8195 0.8334 0.8667 0.7248 0.7222 42.17 42.36

Xception
Baseline 0.8472 0.9215 (0.8775,

0.9655)
0.9028 0.7917 0.8125 0.8553 0.6988 0.6944 35.31 -

Fine-
tuned

0.8681 0.9297 (0.8879,
0.9715)

0.8334 0.9028 0.8956 0.8634 0.7379 0.7361 46.47 37.57

DenseNet-
121

Baseline 0.8333 0.9153 (0.8698,
0.9608)

0.9028 0.7639 0.7927 0.8442 0.6732 0.6667 30.06 -

Fine-
tuned

0.8750 0.9386 (0.8993,
0.9779)

0.9028 0.8473 0.8553 0.8784 0.7512 0.75 51.54 54.51

NasNet-
Mobile

Baseline 0.7778 0.8502 (0.7919,
0.9085)

0.8473 0.7084 0.744 0.7923 0.561 0.5556 13.48 -

Fine-
tuned

0.8542 0.911 (0.8644,
0.9576)

0.8612 0.8473 0.8494 0.8552 0.7085 0.7083 34.43 11.85

MobileNet-
V2

Baseline 0.8681 0.9325 (0.8915,
0.9735)

0.8473 0.8889 0.8841 0.8653 0.7368 0.7361 44.4 -

Fine-
tuned

0.8750 0.925 (0.8819,
0.9681)

0.8473 0.9028 0.8971 0.8715 0.7512 0.75 51.54 37.38

ResNet-
18

Baseline 0.8542 0.9302 (0.8885,
0.9719)

0.9167 0.7917 0.8149 0.8628 0.714 0.7083 41.83 -

Fine-
tuned

0.8958 0.9477 (0.9130,
0.9850)

0.8612 0.9306 0.9254 0.8921 0.7936 0.7917 83.2 46.05

Fig 13 shows the following: (i) a CXR with COVID-19 disease consensus ROI obtained 643

with STAPLE using Rad-1 and Rad-2 annotations, and (ii) the ROI localization 644

achieved with various fine-tuned models and their baseline counterparts. 645

[Fig 13 about here.] 646

We extracted the features from the deepest convolution layer of the fine-tuned 647

models and their baseline counterparts. We used CRM tools to localize the pixels 648

involved in predicting the CXR images as showing COVID-19 viral disease patterns. As 649
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observed in Fig. 13, the baseline models demonstrated poor disease ROI localization, 650

compared to the fine-tuned models. We observed that the fine-tuned models learned 651

salient ROI feature representations, matching the experts’ knowledge about the disease 652

ROI. The localization excellence of the fine-tuned models can be attributed to (i) 653

CXR-specific knowledge transfer that helped to learn modality-specific characteristics; 654

the learned feature representations are transferred and repurposed for the COVID-19 655

detection task, and (ii) optimal architecture depth to learn the salient ROI feature 656

representations to classify CXRs to their respective categories. These deductions are 657

supported by poor localization performance of deeper, out-of-the-box 658

ImageNet-pretrained baseline CNNs like DenseNet-121, Inception-V3, and 659

MobileNet-V2, which possibly suffered from overfitting and resulted in poor learning 660

and generalization. 661

Ensemble studies 662

We constructed ensembles of the top-3, top-5, and top-7 performing fine-tuned 663

CNNs to evaluate for an improvement in predicting the CXRs as showing normal lungs 664

or COVID-19 viral disease patterns. We used majority voting, simple averaging, and 665

weighted averaging strategies toward this task. In weighted averaging, we optimized the 666

weights for the model predictions to minimize the total logarithmic loss. We used the 667

SLSQP algorithm to iterate through this minimization process and converge to the 668

optimal weights for the model predictions. The results achieved with the various 669

ensemble methods are shown in Table 10. 670

Table 10. Performance achieved with an ensemble of top-3, top-5, and top-7 fine-tuned models toward
COVID-19 detection. Bold numerical values denote best performances in the respective columns. Top-3 weighted
averaging looks best but the AUC differences are not statistically significant.

Ensemble
method

Top-N
models

Acc. AUC (CI) Sens. Spec. Prec. F 1 MCC Kappa DOR

Majority voting
3 0.9028 0.9097 (0.8628,

0.9566)
0.8612 0.9167 0.9155 0.8986 0.8084 0.8055 102.22

5 0.8819 0.8819 (0.8291,
0.9347)

0.8612 0.9028 0.8986 0.8795 0.7646 0.7639 57.63

7 0.8889 0.8889 (0.8375,
0.9403)

0.875 0.9028 0.9000 0.8874 0.7781 0.7778 65.02

Simple
averaging

3 0.8958 0.9483 (0.9121,
0.9845)

0.8889 0.9028 0.9015 0.8952 0.7918 0.7917 74.32

5 0.8819 0.9462 (0.9093,
0.9831)

0.8612 0.9028 0.8986 0.8795 0.7646 0.7639 57.63

7 0.8819 0.9453 (0.9081,
0.9825)

0.875 0.8889 0.8874 0.8812 0.764 0.7639 56.01

Weighted
averaging

3 0.9097 0.9508 (0.9118,
0.9844)

0.9028 0.9445 0.9394 0.9091 0.8196 0.8194 105.6

5 0.9028 0.9493 (0.9134,
0.9852)

0.875 0.9306 0.9265 0.9000 0.8069 0.8055 93.87

7 0.8889 0.9459 (0.9089,
0.9829)

0.8889 0.8889 0.8889 0.8889 0.7778 0.7778 64.02

We observed no statistically significant difference in the AUC values achieved by the 671

various ensemble methods (p > 0.05). We observed that the performance with top-3 672

ensembles is better than that of top-5 and top-7 ensembles. It is observed that the 673

weighted averaging of top-3 fine-tuned CNNs viz. ResNet-18, MobileNet-V2, and 674

DenseNet-121 demonstrated better performance when their predictions are optimally 675

weighted at 0.6357, 0.1428, and 0.2216, respectively. This weighted averaging ensemble 676
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delivered better performance in terms of accuracy, AUC, DOR, Kappa, F1 score, MCC, 677

and other metrics, as compared to other ensembles. The confusion matrix, ROC curves, 678

and normalized Sankey flow diagram obtained with the weighted averaging of the top-3 679

fine-tuned CNNs are shown in Fig 14. Table 11 shows the performance achieved in 680

terms of CRM-based IoU and mAP scores by the individual fine-tuned CNNs using the 681

annotations of Rad-1, Rad-2, and STAPLE-generated consensus ROI. 682

[Fig 14 about here.] 683

Table 11. Performance achieved in terms of CRM-based IoU and mAP values by the individual fine-tuned
CNNs using the radiologists’ annotations and STAPLE-generated ROI consensus annotation. Bold numerical
values denote best performances in the respective rows.

Annota-
tions

Parame-
ters

Xcep-
tion

Inception-
V3

DenseNet-
121

VGG-
19

VGG-
16

MobileNet-
V2

ResNet-
18

NasNet-
Mobile

Rad-1
IOU 0.0678 0.1174 0.0799 0.0854 0.1076 0.0644 0.0972 0.1000
mAP
@[0.1:0.7]

0.0571 0.1142 0.0697 0.0645 0.0986 0.0712 0.0593 0.075

Ranking 8 1 5 6 2 4 7 3

Rad-2
IOU 0.2146 0.2567 0.2398 0.2183 0.2230 0.1825 0.2293 0.2569
mAP
@[0.1:0.7]

0.146 0.206 0.1858 0.1643 0.1882 0.1467 0.1742 0.2186

Ranking 8 2 4 6 3 7 5 1

STAPLE
IOU 0.0670 0.1337 0.0916 0.0951 0.1267 0.0713 0.1126 0.1095
mAP
@[0.1:0.7]

0.0603 0.1213 0.0792 0.073 0.1068 0.0775 0.0648 0.0851

Ranking 8 1 4 6 2 5 7 3

We observed that the model ROI predictions achieved varying IoU and mAP scores 684

with the annotations of Rad-1, Rad-2, and the STAPLE-generated ROI consensus. For 685

Rad-1, the fine-tuned Inception-V3 model demonstrated higher values for the average 686

IoU and mAP metrics. For Rad-2, we observed that the fine-tuned NasNet-Mobile 687

outperformed other models. With STAPLE-generated consensus ROI, the Inception-V3 688

model outperformed other models in localizing COVID-19 viral disease-specific ROI. 689

The precision-recall (PR) curves of the best performing models using Rad-1, Rad-2, 690

and the STAPLE-generated consensus ROI are shown in Fig 15. These curves are 691

generated for varying IoU thresholds in the range (0.1 – 0.7). The confidence score 692

threshold is varied to generate each curve. For a given fine-tuned model, we define the 693

confidence score as the highest heat map value in the predicted ROI weighted by the 694

classification score at the output nodes. We considered the ROI predictions as TP when 695

the IoU and confidence scores are higher than their corresponding thresholds. For a 696

given PR curve, we computed the AP score as the average of the precision across all 697

recall values. 698

[Fig 15 about here.] 699

The following are the important observations from this localization study: (i) The 700

accuracy of a model is not related to disease ROI localization. From Table 6, we 701

observed that the fine-tuned ResNet-18 model is highly accurate, followed by 702

DenseNet-121 and MobileNet-V2, in classifying the CXRs as belonging to the 703

COVID-19 viral category. However, while localizing disease-specific ROI, the 704

Inception-V3, VGG-16, and NasNet-Mobile fine-tuned models delivered superior ROI 705
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localization performance compared to other models. This underscores the fact that the 706

classification accuracy of a model is not an optimal measure to interpret their learned 707

behavior. Localization studies are indispensable to understand the learned features and 708

compare them to the expert knowledge for the problem under study. These studies 709

provide comprehensive qualitative and quantitative measures of the learning capacity of 710

the model and its generalization ability. 711

Next, we constructed an ensemble of CRMs through averaging the ROI localization 712

for the top-3, top-5, and top-7 fine-tuned models. We ranked the models based on the 713

IoU and mAP scores. The localization performance achieved with the various ensemble 714

CRMs is shown in Table 12. 715

Table 12. IOU and mAP values obtained by top-3, top-5, and top-7 ensembles using annotations of Rad-1,
Rad-2, and STAPLE-generated consensus ROI annotations. Bold numerical values denote best performances in
the respective rows.

Annotations Parameters Top-3 Top-5 Top-7

Rad-1 IOU 0.1343 0.0994 0.1236
mAP@[0.1:0.7] 0.1264 0.0767 0.0753

Rad-2 IOU 0.2673 0.2955 0.2865
mAP@[0.1:0.7] 0.2179 0.2352 0.2292

STAPLE IOU 0.1518 0.1193 0.1350
mAP@[0.1:0.7] 0.1352 0.0924 0.0916

From Table 12, we observed that the ensemble CRMs delivered superior ROI 716

localization performance compared to that achieved with the individual models. 717

However, the number of models in the top-performing ensembles varied. While using 718

the annotations of Rad-1, we observed that the ensemble of the top-3 models 719

demonstrated higher values for IoU and mAP than other ensembles. However, for 720

Rad-2, the ensemble of the top-5 models demonstrated superior localization with IoU 721

and mAP values of 0.2955 and 0.2352, respectively. The ensemble of top-3 fine-tuned 722

models demonstrated higher values for IoU and mAP scores compared to other models 723

while using STAPLE-generated ROI consensus annotation. Considering this study, we 724

observed that averaging the CRMs of more than top-5 fine-tuned models didn’t improve 725

performance but rather it saturates ROI localization. The PR curves obtained with the 726

top-N ensemble CRMs using Rad-1, Rad-2, and STAPLE-generated consensus ROI are 727

shown in Fig 16. 728

[Fig 16 about here.] 729

Instances of CXRs showing ROI annotations of Rad-1, Rad-2, top-3 ensemble using 730

STAPLE-generated ROI consensus (referred to as program hereafter), and the 731

STAPLE-generated ROI consensus annotation are shown in Fig 17. 732

[Fig 17 about here.] 733

Fig 18 shows the following: (A) an ensemble CRM generated with the top-3 734

fine-tuned models that delivered superior localization performance using 735

STAPLE-generated ROI consensus annotation, and (B) an ensemble CRM generated 736

with the top-5 fine-tuned models that delivered superior localization performance using 737

the annotations of Rad-2. 738

[Fig 18 about here.] 739
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We observe that the CRMs obtained using individual models in the top-N ensemble 740

highlight ROI to varying extents. The ensemble CRM averages the ROIs localized with 741

individual CRMs to highlight the disease-specific ROI involved in class prediction. The 742

ensemble CRMs have a superior IoU value, compared to that of individual CRMs; the 743

ensemble CRM improved localization performance as compared to individual ROI 744

localization. This underscores the fact that ensemble localization improves performance 745

and ability to generalize, conforming to the experts’ knowledge about COVID-19 viral 746

disease manifestations. 747

Statistical Analysis 748

To perform a one-way ANOVA analysis, we investigated whether the assumptions of 749

data normality and homogeneous variances are satisfied. We used the Shapiro–Wilk test 750

to investigate for normal distribution of the data and Levene’s test, for homogeneity of 751

variances, using mAP scores obtained with the top-N ensembles. We plotted the 752

residuals to investigate if the assumption of normal residual distribution is satisfied. Fig 753

19 shows the following: (A) The mean plot for the mAP scores obtained by the top-N 754

ensembles using Rad-1, Rad-2, and STAPLE-generated consensus ROI annotations, and 755

(B) a plot of the quantiles of the residuals against that of the normal distribution. 756

[Fig 19 about here.] 757

It is observed from Fig 19B that all the points fall approximately along with a 758

45-degree reference that shows that the assumption of the normal distribution is 759

satisfied. Table 13 shows the consolidated results of Shapiro–Wilk, Levene, and one-way 760

ANOVA analyses. 761

Table 13. Consolidated results of Shapiro–Wilk, Levene, and one-way ANOVA analyses.

Metric Shapiro–Wilk test (p ) Levene’s test (p ) ANOVA (F) ANOVA (p )
mAP 0.1014 0.3365 1.678 0.2060

To compute one-way ANOVA, we measure the variance between group means, the 762

variance within the group, and the group sizes. This information is combined to 763

measure statistical significance from the test statistic F if it follows an F-distribution. 764

In our study, we have three groups (Rad-1, Rad-2, and STAPLE) of 10 observations 765

each, hence the distribution is mentioned as F (2, 27). As observed from Table 13, the 766

p-values obtained with the Shapiro-Wilk test are not significant (p > 0.05) and reveals 767

that the normality assumption is satisfied. The result of Levene’s test is not statistically 768

significant (p > 0.05). That demonstrates that the variance across the mAP values 769

obtained with the annotations of Rad-1, Rad-2, and STAPLE-generated consensus ROI 770

are not statistically significantly different. Since the conditions of data normality and 771

homogeneity of variances are satisfied, we performed one-way ANOVA to explore the 772

existence of a statistically significant difference in the mAP scores. To this end, we 773

observed no statistically significant difference in the mAP scores obtained with Rad-1, 774

Rad-2, and STAPLE-generated consensus ROI (F (2, 27) = 1.678, p = 0.2060). This 775

smaller F-value underscores the fact that the null hypothesis (H0) -all groups 776

demonstrate equal mAP scores- holds good. 777

Inter-reader variability analysis and performance assessment 778

We used the STAPLE-generated consensus ROI as to the standard reference and 779

measured its agreement with that generated by the program and the radiologists. The 780

consensus ROI is estimated from the set of ROI annotations provided by Rad-1 and 781

Rad-2. STAPLE assumes that Rad-1 and Rad-2 individually annotated ROIs for the 782

given CXRs so that the quality of annotations are captured. We determined the set of 783

TPs, FPs, TNs, and FNs for 10 different IoU thresholds in the range (0.1 – 0.7) and 784
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provided a measure of inter-reader variability and program performance using the 785

following metrics: (i) Kappa statistic; (ii) Sensitivity; (iii) Specificity; (iv) PPV; and (v) 786

NPV. These parameters depend on the relative proportion of the disease-specific ROI. 787

An ROI provided by a radiologist or predicted by the program is considered as a TP if 788

the IoU with the consensus ROI is greater than or equal to a given IoU threshold. Each 789

radiologist or program ROI that produces an IoU less than the threshold or falls outside 790

the consensus ROIs is counted as FP. The FN is defined as a radiologist or program 791

ROI that is completely missing when there is a consensus ROI. If there is an image with 792

no ROIs on both the ROI annotations under test, it is considered as TN. Fig 20 shows 793

the variability in Kappa, sensitivity, specificity, and PPV values observed for the Rad-1, 794

Rad-2, and the program. 795

[Fig 20 about here.] 796

The estimated Kappa, sensitivity, specificity, PPV, and NPV values that are 797

averaged over 10 different IoU thresholds in the range (0.1 – 0.7) are shown in Table 14. 798

Table 14. Performance level assessment and inter-reader variability analysis using STAPLE-generated
consensus ROI.Bold numerical values denote the best performances in respective columns.

Annotations Kappa Sensitivity Specificity PPV NPV
Rad - 1 0.1805 1.0 0.1384 0.7140 1.0
Rad - 2 0.0080 1.0 0.0121 0.2877 1.0
Program 0.0740 0.9037 0.1467 0.5154 0.6

The performance assessment as observed from Table 14 indicated that Rad-1 is more 799

specific than Rad-2. The same holds good for the Kappa and PPV metrics. We 800

observed that NPV is 1 for Rad-1 and Rad-2. This is because the number of FNs = 0, 801

which signifies that none of the radiologists ROI completely missed when there is an 802

ROI in the STAPLE-generated consensus annotation. However, the NPV achieved with 803

the program is 0.6 which underscores the fact the predicted ROIs missed a marked 804

proportion of ROIs in the STAPLE-generated consensus. This assessment indicated that 805

Rad-1 generated annotations similar to that of STAPLE-generated consensus by 806

demonstrating higher values for Kappa, sensitivity, and PPV as compared to Rad-2. We 807

also observed that the program is performing with higher specificity but with lower 808

sensitivity as compared to Rad-1 and Rad-2. These assessments provided feedback 809

indicating the need for program modifications, parameter tuning, and other measures, 810

to improve its localization performance. 811

Discussion 812

There are several salient observations to be made from the analyses reported above. 813

These include the kind of data used in training, the size and variety of data collections, 814

learning ability of various DL architectures informing their selection, need for 815

customizing the models for improved performance, benefits of ensemble learning, and 816

the imperative for localization to measure conformity to the problem. 817

We observed that repeated CXR-specific pretraining and fine-tuning resulted in 818

improved performance toward COVID-19 detection as compared to the baseline, 819

out-of-the-box, ImageNet pretrained CNNs. This highlights the need to use task-specific 820

modality training resulting in improved model adaption, convergence, reduced bias, and 821

reduced overfitting. This approach may have helped the DL models differentiate 822

distinct radiological manifestations between COVID viral pneumonia and other 823
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non-viral pneumonia-related opacities. An added benefit is that this approach resulted 824

in reductions in both computations and the number of trainable parameters. 825

It is well-known that neural networks develop or learn implicit rules to convert input 826

data into features for making decisions. These learned rules are opaque to the user and 827

the decisions are difficult to interpret. However, an interpretable model explaining its 828

predictions related to model accuracy doesn’t necessarily guarantee that accurate 829

predictions are for the right reasons. Localization studies help observe if the model has 830

learned salient ROI feature representations that agree with expert annotations. In our 831

study, we demonstrate that CRM visualization tools show superior localization 832

performance in localizing COVID-19 viral disease-specific ROIs, particularly for the 833

fine-tuned models compared to the ImageNet-pretrained CNNs. 834

Model ensembles further improved qualitative and quantitative performance in 835

COVID-19 detection. Ensemble learning compensated mislabeling in individual models 836

by combining their predictions and reduced prediction variance to the training data. 837

Sensitivity also declined slightly, but this decline was not statistically significant. We 838

observed that the weighted averaging ensemble of the top-3 performing fine-tuned 839

models delivered better performance compared to any individual constituent model. 840

The results demonstrate that the detection task benefits from an ensemble of repeated 841

CXR-specific pretrained and fine-tuned models. Ensemble learning also compensates for 842

localization errors in CRMs and missed ROIs by combining and averaging the individual 843

CRMs. Empirical evaluations show that ensemble localization demonstrated superior 844

IoU and mAP scores and they significantly outperform ROI localization by individual 845

CNN models. 846

It is difficult to quantify individual radiologists’ performance in annotating ROIs in 847

medical images. Not only are they the truth standard, but this “truth” is impacted by 848

inherent biases related to a pandemic event like COVID-19 and their clinical exposure 849

and experience. This complexity is compounded further because CXRs offer lower 850

diagnostic sensitivity than CTs for example. So, a conservative assessment of the CXR 851

is likely to result in smaller and more specific truth annotation ROIs. We used STAPLE 852

to compute a probabilistic estimate of expert ROI annotations for the two expert 853

radiologists who contributed to this study. STAPLE assumes these annotations are 854

conditionally independent. The algorithm discovers and quantifies the bias among the 855

experts when they differ in their opinion of the disease-specific ROI annotation. We use 856

STAPLE-generated annotations as GT to assess the variation for every annotation for 857

each expert, where the DL model is also considered as an expert. We observed that the 858

Kappa values obtained using the STAPLE-generated consensus ROI are in a low range 859

(0 – 0.2). This is probably because of the small number of experts and their inherent 860

biases in assessing COVID-19 cases. Particularly, we note that Rad-1 was very specific 861

in marking the ROIs, whereas Rad-2 annotated larger regions that sometimes 862

accommodated multiple smaller regions into a single ROI. This led to lower IoU value 863

that in turn affected the Kappa value. The pandemic is an evolving situation and CXR 864

manifestations often exhibit biological similarity to non-COVID-19 viral pneumonia. 865

The CXR is not a definitive diagnostic tool and expert views may differ in referring a 866

candidate patient for further review. It would be helpful to conduct a similar analysis 867

with a larger number of experts on a larger patient population. We remain hopeful that 868

health agencies and medical societies will make such image collections available for 869

future research. As more reliable and widely available COVID testing becomes available, 870

the results of that testing could be used with CXRs as an additional important 871

indicator of GT. 872

Regarding the limitations of our study: (i) The publicly available COVID-19 data 873

collections used are fairly small and may not encompass a wide range of disease pattern 874

variability. An appropriately annotated large-scale collection of CXRs with COVID-19 875
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viral disease manifestations is necessary to build confidence in the models, improve their 876

robustness, and generalization. (ii) The study is evaluated with the ROI annotations 877

obtained from two expert radiologists. However, it would help to have more radiologists 878

contribute independently in the annotation process and then arrive at a consensus that 879

could reduce annotation errors. (iii) We used conventional convolutional kernels toward 880

this study, however, future research could propose novel convolutional kernels that 881

reduce feature dimensionality and redundancy and result in improved performance with 882

reduced memory and computational requirements. (iv) Ensemble models require 883

markedly high training time, memory, and computational resources for successful 884

deployment and use. However, recent advancements in storage and computing solutions 885

and cloud technology could lead to improvements in this regard. 886

Conclusions 887

In this study, we have demonstrated that a combination of repeated CXR-specific 888

pretraining, fine-tuning, and ensemble learning helped in (a) transferring CXR-specific 889

learned knowledge that is subsequently fine-tuned to improve COVID-19 detection in 890

CXRs; and (b) improving classification generalization and localization performance by 891

reducing prediction variance. Ensemble-based ROI localization helped in improving 892

localization performance by compensating for the errors in individual constituent 893

models. We also performed inter-reader variability analysis and program performance 894

assessment by comparing them with a STAPLE-based estimated reference. This 895

assessment highlighted the opportunity for improving performance through ensemble 896

modifications, requisite parameter optimization, increased task-specific dataset size, and 897

involving “truth” estimates from a larger number of expert collaborators. We believe 898

that the results proposed are useful for developing robust models for tasks involving 899

medical image classification and disease-specific ROI localization. 900
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Fig 1. The architecture of the custom U-Net with dropout.
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Fig 2. Segmentation workflow showing UNet-based mask generation and
lung ROI cropping.
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Fig 3. The workflow of the proposed repeated CXR-specific pretraining
and fine-tuning.
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Fig 4. A custom Wide Residual Network (WRN) with dropout
regularization.
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Fig 5. The architecture of the CNNs used in the first stage of CXR-specific
pretraining. (I/P = Input, I-CNN = truncated ImageNet-pretrained
CNNs, ZP = Zero-padding, CONV = Extra convolution layer, GAP =
Global Average Pooling, DO = Dropout, D = Final dense layer with
Softmax activation)
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Fig 6. The architecture of the CNNs used in the second stage of
pretraining. (I/P = Input, CXR-Pre-CNN = CXR-specific CNNs from the
first stage of pretraining, truncated at their deepest convolutional layer,
GAP = Global Average Pooling, DO = Dropout, D = Final dense layer
with Softmax activation.
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Fig 7. The architecture of the CNNs fine-tuned toward COVID-19
detection. (I/P = Input, CXR-Pre-CNN = CXR-pretrained CNNs from
the second stage of pretraining, truncated at their deepest convolutional
layer, GAP = Global Average Pooling, DO = Dropout, D = Final dense
layer with Softmax activation.
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Fig 8. Examples showing inter-reader variability in annotating COVID-19
disease ROI. (A) and (B) show the annotations (bounding boxes in blue)
of Rad-1 and Rad-2, respectively, for a given COVID-19 disease labeled
image; (C) and (D) shows the GT annotations of Rad-1 and Rad-2,
respectively for another COVID-19 disease labeled image.
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Fig 9. (A) Confusion matrix; (B) ROC curves; (C) Normalized Sankey flow
diagram obtained using the VGG-19 model during the first-stage of
CXR-specific pretraining.
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Fig 10. (A) Confusion matrix; (B) ROC curves; (C) Normalized Sankey
flow diagram obtained using the DenseNet-121 model during the second
stage of CXR-specific pretraining.
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Fig 11. (A) Confusion matrix; (B) ROC curves; (C) Normalized Sankey
flow diagram obtained using the ResNet-18 model during fine-tuning for
COVID-19 detection.
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Fig 12. Visualizing feature embedding for the ResNet-18 fine-tuned model
using t-SNE. The plot shows a 1024-dimensional space embedded into 2 dimensions.
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Fig 13. COVID-19 viral disease ROI CRM-based localization achieved
using the fine-tuned models and their baseline counterparts. (A) Original
CXR with STAPLE-generated consensus ROI (shown in blue); (B) Baseline VGG-16;
(C) Baseline VGG-19; (D) Baseline MobileNet-V2; (E) Baseline DenseNet-121; (F)
Baseline Inception-V3; (G) Fine-tuned VGG-16; (H) Fine-tuned VGG-19; (I)
Fine-tuned MobileNet-V2; (J) Fine-tuned DenseNet-121; (K) Fine-tuned Inception-V3.
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Fig 14. (A) Confusion matrix; (B) ROC curves; (C) Normalized Sankey
flow diagram obtained through weighted averaging of the top-3 fine-tuned
CNNs toward COVID-19 detection.
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Fig 15. PR curves for the top-performing models using annotations of (A)
Rad-1; (B) Rad-2; (C) STAPLE-generated ROI consensus.
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Fig 16. PR curves for the top-N performing models using annotations of
(A) Rad-1 (N = 3); (B) Rad-2 (N = 5); (C) STAPLE-generated consensus
ROI (N = 3).
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Fig 17. Sample CXRs showing annotations generated by Rad-1 (A) and
(E) (in blue); Rad-2 (B) and (F) (in green); (C) and (G) top-3 ensemble
using STAPLE-generated consensus ROI (program) (in yellow); (D) and
(H) STAPLE-generated consensus ROI annotation (in red).
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Fig 18. Instances of ensemble CRMs combining (A) top-3 CNNs using
STAPLE-generated consensus ROI annotation; (B ) top-5 CNNs using
Rad-2 annotations. The green box denotes reference ROI annotation and
the blue box denotes ensemble CRM localization.
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Fig 19. (A) Mean plot for the mAP scores obtained by the top-N
ensembles using Rad-1, Rad-2, and STAPLE-generated consensus ROI
annotations; Error bars represent standard errors. The differences are not
statistically significant; (B) Residual plot showing the data follow the
normal distribution .
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Fig 20. Assessing inter-reader variability and program performance.The
following performance metrics are measured and plotted for 10 different IoU thresholds
in the range (0.1 – 0.7): (A) Kappa statistic; (B) Sensitivity; (C) Specificity; (D) PPV.
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