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 Abstract—Cervical cancer is one of the deadliest cancers 
affecting women globally. Cervical intraepithelial neoplasia 
(CIN) assessment using histopathological examination of 
cervical biopsy slides is subject to interobserver variability. 
Automated processing of digitized histopathology slides has 
the potential for more accurate classification for CIN 
grades from normal to increasing grades of pre-
malignancy: CIN1, CIN2 and CIN3.  Cervix disease is 
generally understood to progress from the bottom 
(basement membrane) to the top of the epithelium. To 
model this relationship of disease severity to spatial 
distribution of abnormalities, we propose a network 
pipeline, DeepCIN, to analyze high-resolution epithelium 
images (manually extracted from whole-slide images) 
hierarchically by focusing on localized vertical regions and 
fusing this local information for determining Normal/CIN 
classification. The pipeline contains two classifier networks: 
1) a cross-sectional, vertical segment-level sequence 
generator (two-stage encoder model) is trained using weak 
supervision to generate feature sequences from the vertical 
segments to preserve the bottom-to-top feature 
relationships in the epithelium image data; 2) an attention-
based fusion network image-level classifier predicting the 
final CIN grade by merging vertical segment sequences. The 
model produces the CIN classification results and also 
determines the vertical segment contributions to CIN grade 
prediction. Experiments show that DeepCIN achieves 
pathologist-level CIN classification accuracy. 
 

Index Terms—Attention networks, cervical cancer, cervical 
intraepithelial neoplasia, classification, convolutional neural 
networks, digital pathology, histology, fusion based classification, 
recurrent neural networks. 
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I. INTRODUCTION 

Cervical cancer prevention remains a big global challenge. 

It is estimated that in 2020 in the US 13,800 women will be 
diagnosed with invasive cervical cancer, and among them 4,290 
will die [1]. This cancer ranks second in fatalities among 20-39 
year old women [1]. Screening has helped decrease the 
incidence rate of cervical cancer by more than half since the 
mid-1970s through early detection of precancerous cells [2], yet 
300,000 women die every year worldwide [3]. As a public 
health priority in 2018 the WHO director general made a global 
call for elimination of cervical cancer [4]. 
 If clinically indicated, the cervix is further examined by 
taking a sample of cervical tissue (biopsy). The tissue sample is 
transferred to a glass slide and observed under magnification 
(histopathology). Cervical dysplasia or cervical intraepithelial 
neoplasia (CIN) is the growth of abnormal cervical cells in the 
epithelium that can potentially lead to cervical cancer. CIN is 
usually graded on a 1-3 scale. CIN 1 (Grade I) is mild epithelial 
dysplasia, confined to the inner one third of the epithelium. CIN 
2 (Grade II) is moderate dysplasia, usually spread within the 
inner two-thirds of the epithelium. CIN 3 (Grade 3) is 
carcinoma in-situ (severe dysplasia) involving the full thickness 
of the epithelium [5]. A diagnosis of Normal indicates the 
absence of CIN. Fig. 1 depicts the localized regions with all four 
classes. 

Our previous work on computational approaches for digital 
pathology image analysis has relied mostly on extraction of 
handcrafted features based on the domain expert’s knowledge. 
Guo et al. [6] manually extracted traditional nuclei features for 
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CIN grade classification. The images were split into ten equal 
vertical segments for extraction of local features, and classified 
using voting fusion with support vector machine (SVM) and 
linear discriminant analysis (LDA). Huang et al. [7] used the 
LASSO algorithm for feature extraction with SVM ensemble 
learning for classification of cervical biopsy images. 
Automated CIN grade diagnosis was also performed through 
analyzing Gabor texture features with K-means clustering [8] 
and slide level classification with texture features [9]. Accuracy 
fell short of that needed for clinical or laboratory use. In the past 
decade, success of deep learning approaches for image 
segmentation and classification in the health domain has 
attracted more research [10]. Toward that, AlMubarak et al. 
[11] developed a fusion-based hybrid deep learning approach 
that combined manually extracted features and convolutional 
neural network (CNN) features to detect the CIN grade from 
histology images. Li et al. [12] proposed a transfer learning 
framework with the Inception-v3 network for classifying 
cervical cancer images. An excellent review of computer vision 
approaches for cervical histopathology image analysis was 
presented in Li et al. [13]. 

A critical problem with manual CIN grading by pathologists 
is the variability among general pathologists in CIN 
determination. Stoler et al. [14]  found agreement for the 
general community pathologist with the expert pathologist 
panel assignment to range from 38% to 68%: 38.2%, 38%, and 
68% for CIN grades 1, 2 and 3, respectively. The overall 
Cohen’s kappa value (κ) was 0.46 for four grades, these three 
CIN grades and cervical carcinoma. Cai et al. [15] found close 
agreement among expert pathologists. For four expert 
pathologists, with 8-30 years of grading CIN slides, a weighted 
κ range of 0.799 to 0.887 was found. If automated CIN grading 
results can be made as close to expert readings as the variability 
among expert pathologist readings, automated CIN grading 
may become feasible. 

Our proposed DeepCIN pipeline draws inspiration from the 
way pathologists examine epithelial regions under the 
microscope. They do not scan the entire slide at once, instead 
they analyze local regions across the epithelium to understand 
the bottom-to-top growth of atypical cells and to compare the 
relative sizes of the cell nuclei in local neighborhoods. They use 
this local information to decide the CIN grade globally for the 
whole epithelium region. We developed a pathologist-inspired 
automated pipeline analogous to human study of histopathology 
slides, where we first localize the epithelial regions, then we 

analyze the features across these regions in both directions; 
finally, we fuse the feature information to predict the CIN class 
label and estimated the contribution of these local regions 
towards the global class result. 

In this paper, we present DeepCIN, to automatically 
categorize high-resolution cervical histology images into 
Normal or one of the three CIN grades. Images used in this 
work are manually segmented epithelium regions extracted 
from digitized whole slide images (WSIs) at 10X 
magnification. The classification is carried out through 
hierarchical analysis of local epithelial regions by focusing on 
individual vertical segments and then combining the localized 
feature information in spatial context by introducing recurrent 
neural networks (RNNs).  

The use of RNNs [16], [17] has been found to be successful 
in solving time-series and sequential prediction problems. Their 
use has led to better understanding of contextual features from 
images when combined with CNN-based models. Typically, 
CNNs act as a feature extractor, and RNNs learn the contextual 
information. Shi et al. [18] proposed a convolutional recurrent 
neural network for scene text (sequence-to-sequence) 
recognition. Attention mechanisms [19] were incorporated later 
to improve performance [20], [21]. Attention-based networks 
have been used in speech, natural language processing, 
statistical learning and computer vision [22]. 

A key aspect of our model is that it focuses on differentially 
informative vertical segment regions. This is crucial for 
deciding the level of CIN, because variation of CIN grade in 
local region could impact the overall CIN assessment of the 
epithelium [23]. The major contributions of this paper are: 
1) Hierarchical image analysis from localized regions to the 

whole epithelium image. 
2) Capturing the varying nuclei density across the epithelium 

region by vertically splitting the region into standard width 
segments with reference to the medial axis. 

3) Weakly supervised training scheme for vertical segments. 
4) Image-to-sequence two-stage encoder model for extracting 

localized segment level information. 
5) Attention-based fusion (many-to-one model) for whole 

epithelium image CIN classification. 
6) Identifying local segment contributions towards the whole 

image CIN classification. 

II. METHODOLOGY 
DeepCIN incorporates a two-fold learning process (Fig. 2). 

First, generated vertical segments from the epithelial image are 
fed to a two-stage encoder model for weak supervision training 

 
Fig. 1. Sections of epithelium region with increasing CIN severity (from (b)-
(d)) showing delayed maturation with increase in immature atypical cells from 
bottom-to-top. The sections can be categorized as (a) Normal, (b) CIN1, (c) 
CIN2, and (d) CIN3. In these images left-to-right corresponds to bottom-to-
top of the epithelium. 

(a)

(b)

(c)

(d)
 

Fig. 2.  Overview of DeepCIN model. 
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to constrain the segment class to the image class. Second, an 
attention-based fusion network is trained to learn the contextual 
feature information from the sequence of segments and classify 
the epithelial image into one of the four classes. The remainder 
of this section of the paper is organized as follows:  Section II.A 
discusses cross-sectional vertical segment generation within an 
epithelium image; Section II.B and Section II.C present the two 
parts of the model: a segment-level sequence generator and an 
image-level classifier; Section II.D describes the model training 
approach. 

A. Localization 
Initially, we process the manually segmented epithelium 

regions to find the medial axis and reorient the epithelium to be 
aligned horizontally, as performed by Guo et al. [6]. Guo’s 
methods are modified to generate standard-width vertical 
segments with reference to the medial axis. This helps in better 
understanding the pattern of atypical cells under uniform 
epithelium sections and generating more image data for training 
our deep learning model.  We approximate the medial axis 
curve as a piece-wise linear curve by iteratively drawing a series 
of circles (left to right) of radii equal to the desired segment 
width. The center of each successive circle is the right-most 
intersection point of the previously drawn circle and the medial 
axis curve. All the consecutive intersection points along the 
medial axis curve are joined to form a polygonal chain. At the 
midpoint of each line segment, we compute the slope 
corresponding to an intersecting perpendicular line. At the end 

points of the line segment, we draw vertical lines parallel to this 
midpoint perpendicular. This creates rectangular vertical 
regions of interest as shown in Fig. 3. Using these individual 
vertical regions, we compute a bounding box, which we apply 
to the original image to crop a refined vertical segment. The 
heights and counts of vertical segments created in this manner 
vary with the shapes and sizes of the epithelial images. The 
height and width of the segments are empirically chosen to be 
704 pixels and 64 pixels, respectively (for details refer to 
Section III.A). The RGB image segments are further processed 
by channel-wise normalizing the pixel intensities with zero 
mean and standard deviation of value one, and rotating counter-
clockwise by 90 degrees. This facilitates the classification of 
localized epithelial regions. 

Formally, we assume that an epithelial image 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒ℎ has 𝑁𝑁 
vertical segments 𝐼𝐼𝑣𝑣𝑠𝑠𝑖𝑖  such that: 

𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒ℎ = {𝐼𝐼𝑣𝑣𝑠𝑠1, 𝐼𝐼𝑣𝑣𝑠𝑠2, … , 𝐼𝐼𝑣𝑣𝑠𝑠𝑁𝑁}.       (1) 

B. Segment-level Sequence Generation 
The segment-level sequence generator network is built as an 

two-stage encoder classifier model. The main objective of this 
network is to generate logit vectors to serve as localized 
sequence information for further image-level analysis.  Because 
ground-truth labels for our vertical segments are not available, 
the network is trained against the image-level CIN grade.  Since 
we expect variability in the true CIN grades across the vertical 
segments, use of the single image-level grade for all segments 
within an image introduces noisy labelling for the segments, 
and this may be expected to affect our training. Hence, we 
consider this a weakly supervised learning process.  

We tackle this classification problem as a sequence 
recognition problem. As shown in Fig. 4, the stage I encoder is 
constructed with a CNN that can extract the convolutional 

 
Fig. 3.  Localized vertical segment generation from an epithelial image. 

 
Fig. 4.  Segment-level sequence generator network with two-stage encoder 
structures. 

TABLE I 
SEGMENT-LEVEL SEQUENCE GENERATOR MODEL ARCHITECTURE 

 Layers Configurations Size 

St
ag

e 
I 

Input - 3 × 64 × 704 
Transition 

Layer 0 
𝑘𝑘: 7 × 7, 𝑠𝑠: 2,𝑝𝑝: 3 64 × 32 × 352 
𝑚𝑚𝑝𝑝: 3 × 3, 𝑠𝑠: 2, 𝑝𝑝: 1 64 × 16 × 176 

Dense 
Block 1 �

𝑘𝑘: 1 × 1, 𝑠𝑠: 1,𝑝𝑝: 1
 𝑘𝑘: 3 × 3, 𝑠𝑠: 1, 𝑝𝑝: 1� × 6 256 × 16 × 176 

Transition 
Layer 1 �  𝑘𝑘: 1 × 1, 𝑠𝑠: 1

𝑎𝑎𝑝𝑝: 2 × 2, 𝑠𝑠: 2� 128 × 8 × 88 

Dense 
Block 2 �

𝑘𝑘: 1 × 1, 𝑠𝑠: 1, 𝑝𝑝: 1
 𝑘𝑘: 3 × 3, 𝑠𝑠: 1,𝑝𝑝: 1� × 12 512 × 8 × 88 

Transition 
Layer 2 �  𝑘𝑘: 1 × 1, 𝑠𝑠: 1

𝑎𝑎𝑝𝑝: 2 × 2, 𝑠𝑠: 2� 256 × 4 × 44 

Dense 
Block 3 �

𝑘𝑘: 1 × 1, 𝑠𝑠: 1, 𝑝𝑝: 1
 𝑘𝑘: 3 × 3, 𝑠𝑠: 1,𝑝𝑝: 1� × 24 1024 × 4 × 44 

Pooling 𝑚𝑚𝑝𝑝: 3 × 3, 𝑠𝑠: 4 × 1 1024 × 1 × 44 

St
ag

e 
II 

BLSTM + 
NN 

𝑛𝑛ℎ: 256 512 × 44 
𝑛𝑛ℎ: 256 256 × 44 

BLSTM + 
NN 

𝑛𝑛ℎ: 256 512 × 44 
𝑛𝑛ℎ: 4 4 × 44 

Output - 4 × 1 
𝑘𝑘, 𝑠𝑠, 𝑝𝑝, 𝑚𝑚𝑝𝑝, 𝑎𝑎𝑝𝑝, and 𝑛𝑛ℎ are kernel, stride size, padding size, max pooling, 
average pooling and number of hidden layers, respectively. ‘BLSTM’ and 
‘NN’ stands for bi-directional LSTM and single layer neural network, 
respectively. 
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feature maps. These spatial features are then reduced to have 
height of 1 with maximum pooling operation. It is further 
transformed into a feature sequence by splitting along its width 
and concatenation of vectors formed by joining across the 
channels, similar to Shi et al. [18]. The RNN acts as a stage II 
encoder that decodes the sequential information to predict the 
class value (many-to-one model). It is important to understand 
that the vertical segments carry valuable localized feature 
information including varying nuclei density, which is crucial 
in the decision process. Therefore, it is well represented as a 
feature sequence and a bidirectional RNN focuses on the 
intrinsic details within these vertical segment regions from left-
to-right and right-to-left. 

The architecture of the proposed two-stage encoder model is 
given in Table I. The stage I encoder is built with first 87 layers 
of the DenseNet-121 model [24]. A max-pooling layer is added 
to this last layer such that the feature map has the height of 1. 
This can be considered as a feature sequence generated from 
left to right. Note that the convolutions always operate on local 
regions and hence are translationally invariant. Hence, the 
pixels in the feature maps from left-to-right corresponds to a 
local region in the original image (receptive field) from left-to-
right. That is, the elements in the feature sequence are image 
descriptors in the same order.  Importantly, they preserve the 
bottom-to-top spatial relationships in the original epithelium 
image.  To further analyze this feature context, the generated 
feature sequence is fed to a stage II encoder built of RNNs. 
Specifically, we employed Bidirectional Long-Short-Term 
Memory (BLSTM) [25] networks to analyze and capture the 
long-term dependencies of the sequence from both directions. 
For the stage II encoder, two sets of BLSTM and single layer 
neural networks (NN) were appended to the last max-pooling 
layer of the stage I encoder. The final classification result is 
extracted from the logit vector of the last element in the output 
sequence generated at the stage II encoder. These logit vectors 

summarize the information of all the vertical segments and, 
when combined, form an information sequence that is fused to 
determine the image-level CIN classification. 

Assuming an epithelial image with 𝑁𝑁 vertical segments 𝐼𝐼𝑣𝑣𝑠𝑠𝑖𝑖 , 
we have created logit sequence vectors 𝑣𝑣𝑠𝑠𝑖𝑖 obtained with a 
segment-level sequence generator 𝑓𝑓𝑠𝑠(∙ ; 𝜃𝜃): 

𝑣𝑣𝑠𝑠𝑖𝑖 = 𝑓𝑓𝑠𝑠�𝐼𝐼𝑣𝑣𝑠𝑠𝑖𝑖 ; 𝜃𝜃�          (2) 

where, 𝜃𝜃 represents the model parameters. 

C. Image-level Classification 
The image-level classifier network is designed as an 

attention-mechanism based fusion network as shown in Fig. 5. 
The input sequences are picked up by a gated recurrent unit 
(GRU) [17], which tracks the state of the sequences with a 
gating mechanism. The output is a sequence vector that 
represents the image under test. We use a small classifier with 
an attentional weight for each GRU cell output to encode the 
sequence of the vertical segments as: 

ℎ𝑖𝑖 = 𝐺𝐺𝐺𝐺𝐺𝐺(𝑣𝑣𝑠𝑠𝑖𝑖;ℎ𝑖𝑖−1)         (3) 

where 𝑖𝑖 ∈ [1,𝑁𝑁] and ℎ𝑖𝑖 is the hidden state that summarizes the 
information of the vertical segment 𝐼𝐼𝑣𝑣𝑠𝑠𝑖𝑖. 

The vertical segments may not contribute equally to 
epithelial image classification. We use an attention mechanism 
with a randomly initialized segment-level context vector 𝑤𝑤. 
This vector is used to generate the attentional weights 𝛼𝛼𝑖𝑖 which 
analyze the contextual information and give a measure of 
importance of the vertical segments. The following equations 
explain the employed attention mechanism: 

𝑒𝑒𝑖𝑖 = 𝑤𝑤𝑇𝑇 𝑡𝑡𝑎𝑎𝑛𝑛ℎ(𝑊𝑊𝑣𝑣𝑠𝑠ℎ𝑖𝑖 + 𝑏𝑏𝑣𝑣𝑠𝑠)       (4) 

𝛼𝛼𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝑖𝑖)𝑁𝑁
𝑖𝑖=1

          (5) 

𝑣𝑣𝐼𝐼 = ∑ 𝛼𝛼𝑖𝑖ℎ𝑖𝑖 ,𝑁𝑁
𝑖𝑖=1           (6) 

where 𝑊𝑊𝑣𝑣𝑠𝑠  and 𝑏𝑏𝑣𝑣𝑠𝑠 are trainable weights and bias. 𝑣𝑣𝐼𝐼  is the 
image feature vector that summarizes all the information of 
vertical segments in an epithelial image. The image-level 
classification is determined by: 

𝑝𝑝𝐼𝐼 = 𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡𝑚𝑚𝑎𝑎𝑠𝑠(𝑊𝑊0𝑣𝑣𝐼𝐼 + 𝑏𝑏0).       (7) 

D. Training 
We trained the proposed networks independently with 

stratified K-fold cross validation split at the image-level. First 
the segment-level sequence generator is trained to generate the 
logit vectors of all the segments and then concatenated to form 
a sequence to further train the image-level classifier. 

During segment-level sequence generation, the problem of 
class imbalance is solved by up-sampling the vertical segment 
images with image augmentations: randomly flipping vertically 
and horizontally, rotating with a range of 180 to -180 degree 
angles, changing hue, saturation, value and contrast, and 

 
Fig. 5. Attention-based fusion network for epithelial image-level classification. 
The input sequences are fed to GRU cells.  denote a two layer neural network 
(NN) with hyperbolic tangent and Softmax activation functions, respectively 
to generate attentional weights.  denotes a single layer NN with Softmax 
activation function that produces the classification output.  

~

~
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applying blur and noise. The objective is to minimize the cross-
entropy loss (equation 8) calculated directly from the vertical 
segment image and its restricted ground-truth label given by 

𝐿𝐿𝑘𝑘 = −∑ 𝑙𝑙𝑠𝑠𝑙𝑙 � exp (𝑦𝑦𝑘𝑘)
∑ exp (𝑦𝑦𝑗𝑗)𝑗𝑗

�𝑣𝑣𝑠𝑠       (8) 

where 𝑘𝑘 is the class label of vertical segment image 𝑣𝑣𝑠𝑠 and 𝑦𝑦𝑘𝑘 
is the kth label element value in the logit vector. We use 
ADADELTA [26] for optimization since it automatically 
adapts the learning rates based on the gradient updates. The 
initial learning rate set to 0.01. 

For image-level classification, we use the weighted negative 
log likelihood of correct labels to compute the cost function and 
back propagate the error to update the weights with a stochastic 
gradient descent (SGD) optimizer (learning rate was fixed at 
0.0001). Training loss is given by: 

𝐿𝐿′𝑘𝑘 = −𝑞𝑞𝑘𝑘 ∑ 𝑙𝑙𝑠𝑠𝑙𝑙 (𝑝𝑝𝐼𝐼𝑘𝑘)𝐼𝐼        (9) 

where 𝑘𝑘 is the class label of epithelial image 𝐼𝐼 and 𝑞𝑞𝑘𝑘 is the 
weight of the label 𝑘𝑘. 

III. EXPERIMENTS 
We conducted experiments on our cervical histopathology 

image database to evaluate the effectiveness of the proposed 
classification model and compared its performance with other 
state-of-the-art methods. 

A. Dataset and Evaluation Metrics 
For all the experiments, we use a dataset that contains 453 

high-resolution cervical epithelial images extracted from 146 
hematoxylin and eosin stained cervical histology WSIs. These 
WSIs were provided by Department of Pathology at the 
University of Oklahoma Medical Center in collaboration with 
the National Library of Medicine. They were scanned at 20X 
using Aperio ScanScope slide scanner and saved with the file 
extension svs. All 453 images have corresponding ground-truth 
labels. These annotations were carried out by an expert 
pathologist. The epithelial images have varying sizes which 
range from about 550 × 680 pixels (smallest) to 7500 × 1500 
pixels (largest). This varying size affects the number of vertical 
segments generated from an image, typically ranging from 6 to 
118. Though the vertical segments are generated such that the 
widths are 64 pixels wide, the height of these segments range 
from 160 to 1400 pixels. We address this problem by resizing 

the images to their median height: 704 pixels. This height was 
chosen empirically as a multiple of 32 in order to apply 
convolutions for feature extraction. 

The segments were pre-processed such that they are RGB 
images of standard size: 64 × 704 × 3. We have created a total 
of 11,854 vertical segment images from 453 epithelial images. 
The class distribution of these data is shown in Table II. 
 There are two main challenges with this epithelial image 
dataset. First, the cervical tissues have irregular epithelium 
regions, with color variations, intensity variations, red stain 
blobs, variations in nuclei shapes and sizes, and noise and 
blurring effects created during image acquisition. These effects 
tend to have large inter- and intra-class variability across the 
four classes we seek to label. Second, even though our database 
is labelled by experts and may be considered of high quality, it 
is relatively small. This is a common and recognized problem 
in the biomedical image processing domain. Compared to large 
databases such as ImageNet [27], which has more than 14 
million images with nearly 21 thousand classes, our data is very 
limited. 

The scoring metrics used for the performance evaluation are 
precision (P), recall (R), F1-score (F1), classification accuracy 
(ACC), area under Receiver Operating Characteristic curve 
(AUC), average precision (AP) and Matthews correlation 
coefficient (MCC). Cohen’s kappa score (κ) is used for the 
evaluation of the scoring schemes described in Section III.D.  
The percentage weighted average scores were reported due to 
the inevitable imbalance in the data distribution. 

B. Implementation Details 
Although the entire DeepCIN model can be implemented 

end-to-end, we have split the process into two independent 
training steps. This model was chosen to overcome the GPU 
memory limitation to process these large input images and 
network architectures.  

Details about the segment-level sequence generator network 
and image-level classifier network are given in Table I and Fig. 
4, respectively. Both networks output four classes. The first 
network is trained with weak supervision to determine the logit 
sequence vectors of each vertical segment. The class outputs of 
the final network comprise our major concern. 

A transfer learning technique was incorporated in the stage I 
encoder of the segment-level sequence generator. The 
convolution filters were initialized with ImageNet pre-trained 
weights and were left frozen since the encoder is built with 
initial layers of the DenseNet-121 model which presumably has 
weights already set to extract low-level image features such as 
edges, colors and curves. All the CNN layers are activated with 
the rectified linear unit (ReLU) function, and the single layer 
neural network followed by BLSTM layers in the stage II 
encoder, which does not impose any non-linearity.  The latter 
network consists of GRU cells (with 128 hidden units), a two-
layer neural network (NN) with hyperbolic tangent and 
Softmax activation functions, respectively, to generate 
attentional weights, and a single-layer NN with Softmax 
activation function to produce the classification output from the 
image feature vector. 

TABLE II 
CLASS LABEL DISTRIBUTION 

Class 
Epithelial Images  Segments 

Count %  Count % 

Normal 244 53.8  6,836 57.7 
CIN1 57 12.6  1,433 12.1 
CIN2 79 17.5  2,039 17.2 
CIN3 73 16.1  1,546 13.0 

Total 453 100.0  11,854 100.0 
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We trained and validated the models using stratified 5-fold 
cross validation. We split training and validation data at the 
image level and maintained the same distribution across both 
the models. To address the class imbalance problem, we have 
up-scaled the less populated class images with image 
augmentations for the segment level sequence generation and 
in the image level classification we employed a weighted loss 
function. 

Each individual fold for both the models were trained for 200 
epochs with batch size of 56 with early stopping to avoid 
overfitting. 

We implemented our localized vertical segment generation 
in MATLAB [28] running on an Intel Xeon CPU @ 2.10GHz 
which took 3.42 seconds on average to process one epithelial 
image.  The deep learning models are trained under CUDA 10.2 
and CuDNN v7.6 backend on an NVIDIA Quadro P4000 8GB 
GPU and 64GB RAM with a PyTorch v1.4 [29] framework. 
The time taken for validation is about 0.68 seconds per 
epithelial image. Thus, the entire DeepCIN pipeline takes 4.10 
seconds on average to process and validate one epithelial 
image. 

C. Ablation Studies 
In this section, we perform classifier ablation studies on the 

DeepCIN pipeline to understand its key aspects. The 
experiments include comparison with different segment widths, 
stage I encoder and stage II encoder variants, different fusion 
techniques and benchmark models. 

The proposed model takes standard size image inputs. 
Resizing images will cause image distortions. We observe that 
this has a minor effect on the performance, expected since both 
the training and testing images are similarly resized which 
would result in the model’s capability of handling such 
distortions. But the segment width is to some extent a free 
variable whose setting may modulate the amount of local spatial 
information contained in a vertical segment. Recognizing this, 
we experimented with segment widths of 32, 64 and 128. 
According to Table III, we observe that a segment width of 64 
pixels is an optimal choice (in our experimental search space) 
compared to the segments with 32 pixels wide and 128 pixels 
wide. 

The stage I encoder in the segment level sequence generator 
acts like a spatial feature extractor.  Because our biomedical 
digital image environment is not data-rich for training deep 
learning models, we have experimented with various published 

models which have been pre-trained with the benchmark 
ImageNet database. Only a set of initial layers that extract low 
level features from the input image are considered in building 
the stage I encoder. We observed (from Table IV) that 
DenseNet-121 was better at extracting the crucial epithelial 
information, compared to ResNet-101 [30] and Inception_v3 
[31] models. The DenseNet-121 model is better at feature reuse 
and feature propagation throughout the network with reduced 
parameters. Both DenseNet-121 and ResNet-101 are good at 
alleviating vanishing gradient problems, however DenseNet-
121 with its feed-forward interconnections among layers helps 
in better feature understanding. Inception-v3 uses models that 
are wider rather than deeper to prevent overfitting with 
factorizing convolutions to reduce the number of parameters 
without compromising network efficiency. 

The stage II encoder further encodes the feature sequence 
that is mapped from the translationally invariant feature 
information available from the stage I encoder. Our efforts to 
use bidirectional LSTM as a stage II encoder delivered better 
performance on the segment-level sequence generation that 
reflects on generating essential and better logit feature vectors. 
Table V shows that bidirectional analysis is enables 
understanding of the context of the feature information; this 
aided in up-sampling the segment data by flipping the input 
images horizontally. The use of attention was not helpful for 
understanding the feature sequence in the vertical segments 
with almost 1% decrease in performance across all the metrics 
(Table V). This indicates that the entire feature sequence is 
equally important to interpret the localized information, as 
shown by the equal distribution of attentional weights. The use 
of vanilla neural networks (fully connected layers) was 
comparatively less efficient because LSTMs contain internal 
state cells that act as long-term and short-term memory units 
and manage to learn by remembering the important information 
and forgetting the unwanted. Neural networks lack this ability 
and focus only on the very last input. 

We observed that attentional weights help analyze the 
valuable information from the contribution of each segment 
towards the image-level classification. Table VI confirms this 
observation, showing nearly a 2% improvement in performance 
with inclusion of attention. Techniques like maximum voting 
and average voting of segment-level sequence generation 
results are simple and straight-forward, but fail provide the 
additional information about the localized segment data. 

TABLE III 
ABLATION STUDY ON SEGMENT WIDTHS 

Segment 
width P R F1  ACC AUC AP MCC 

32 82.9 82.3 81.2  82.3 93.5 85.3 72.3 
64* 88.6 88.5 88.0  88.5 96.5 91.5 82.0 
128 85.3 85.6 84.9  85.6 95.9 89.8 77.1 

 
TABLE IV 

ABLATION STUDY ON STAGE I ENCODER MODELS 
Stage I Encoder P R F1 ACC AUC AP MCC 
DesnseNet-121* 88.6 88.5 88.0 88.5 96.5 91.5 82.0 
ResNet-101 87.1 86.9 86.4 86.9 95.0 88.9 79.6 
Inception-v3 85.5 85.4 85.1 85.4 94.8 87.8 77.1 

 

TABLE V 
ABLATION STUDY ON STAGE II ENCODER MODELS 

Stage II Encoder P R F1 ACC AUC AP MCC 
BLSTM* 88.6 88.5 88.0 88.5 96.5 91.5 82.0 
BLSTM + 
Attention 87.9 87.6 87.7 87.6 95.2 88.9 80.1 

FC 85.3 85.0 84.2 85.0 94.7 87.4 76.3 
 
 TABLE VI 

ABLATION STUDY ON FUSION TECHNIQUES 
Fusion P R F1 ACC AUC AP MCC 
GRU 86.3 86.1 85.6 86.1 96.3 90.4 78.0 
GRU+Attention* 88.6 88.5 88.0 88.5 96.5 91.5 82.0 
Max vote 87.6 87.2 87.0 87.2 - - 79.9 
Avg vote 88.0 87.6 87.4 87.6 - - 80.6 
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IV. PERFORMANCE OF DEEPCIN 
We finally compare the performance of the proposed model 

with the state-of-the-art CIN classification models. The models 
used for the comparison are proposed by Guo et al. [6] and 
AlMubarak et al. [11]. The best model of Guo et al. [6], linear 
discriminant analysis, was trained with 27 handcrafted features 
extracted from vertical image segments. The epithelium was 
split into 10 equal parts to create these segments and fusion was 
performed through a voting scheme. AlMubarak et al. [11] used 
the same vertical segments and divided them into three sections: 
top, middle and bottom. 64 × 64 size Lab color space image 
patches were extracted to train three CNN models. The 
resulting confidence values from these sections were treated as 
features, and the 27 features were concatenated to form a hybrid 
approach for training an SVM classifier. The final classifiers of 
both these models were trained with a leave-one-out approach. 

For a direct comparison, we have retrained [6] and [11] 
models on the 453 high-resolution epithelial histopathology 
image data. Table VII shows that the proposed model performs 
best for the CIN classification task. Additionally, our model 
provides the significance of individual local regions towards the 

whole image classification. Results for sample images from the 
proposed DeepCIN model are shown in Fig. 6. The distribution 
of the entire data and the predictions for all 5-folds is depicted 
in the Sankey diagram in Fig. 7, which shows the proportion of 
images that are correctly classified and misclassified. Image 
samples belonging to the CIN1 class were mostly misclassified 
as normal class. Two reasons may explain this: 1) CIN1 images 
closely resemble normal images; 2) the number of CIN1 class 
images is small, relative to the number of Normal class images. 

As an extension, we have tabulated the performance model 
with exact class labels, CIN versus Normal, CIN3-CIN2 versus 
CIN1-Normal, CIN3 versus CIN2-CIN1-Normal, and off-by-
one class (Table VIII).  For the exact class label scheme, the 
predicted class label should exactly match the expert ground-
truth class label. The CIN versus Normal scheme is an 
abnormal-normal grouping of the predicted labels.  The CIN3-
CIN2 versus CIN1-Normal and CIN3 versus CIN2-CIN1-
Normal interclass grouping schemes resemble the clinical 
decisions for treatment. The Off-by-one scheme emphasizes the 
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Fig. 6. Results of DeepCIN. From top to bottom, each column presents original image, localized vertical regions, contribution of segments within an image towards 
the image-level CIN classification (represented as probability distribution over the segments (attentional weights), the dotted lines indicate mean value and 
segments above the mean value, highlighted in green, are contributing the most), and corresponding ground truth and prediction labels, respectively. 

TABLE VIII 
CIN CLASSIFICATION RESULTS WITH DIFFERENT SCORING SCHEMES 

Scoring Scheme P R F1 ACC AUC AP MCC κ 
Exact class label 88.6 88.5 88.0 88.5 96.5 91.5 82.0 81.5 
CIN vs Normal 94.6 94.1 94.0 94.1 93.8 97.7 88.5 87.9 
CIN3-CIN2 vs 
CIN1-Normal 96.8 96.7 96.7 96.7 96.0 98.9 92.7 92.5 

CIN3 vs CIN2-
CIN1-Normal 96.2 96.0 96.0 96.0 88.4 98.3 85.3 84.8 

Off-by-one - - - 98.9 - - - - 
 

TABLE VII 
COMPARISON WITH STATE OF THE ART MODELS 

Model P R F1 ACC AUC AP MCC 
Guo et al. [6] 67.5 73.3 69.4 73.4 - - 56.5 
AlMubarak et al. [11] 66.1 75.6 70.4 75.5 90.9 78.1 60.3 
Ours* 88.6 88.5 88.0 88.5 96.5 91.5 82.0 
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possible disagreement between the expect pathologists while 
labelling the CIN class which is usually observed to be one 
grade off [32]. 

V. DISCUSSION 
The main objective of the DeepCIN model is to classify the 

high-resolution epithelium images into normal or precancerous 
transformation of cells of the uterine cervix. We generate 
classification results by fusing localized information, forming a 
sequence of logit feature vectors in the same order of the 
vertical segments from the epithelium image. The number of 
vertical segments created varies since the epithelium images 
have arbitrary shapes. Traditional neural networks are limited 
to fixed-length input, but RNNs have the capability to read 
varying input sequences along with memorization. We employ 
a GRU to read the arbitrarily shaped input sequences. GRU with 
attention helps in better understanding the differentially 
informative localized data. Unlike the stage II encoder from the 
segment-level sequence generator, incorporation of attention 
helped the model to better fuse the segment data and identify 
localized regions that are significantly important in the 
classifying the epithelial image. 

It is now four decades since Marsden Scott Blois presented a 
paradigm for medical information science to distinguish 
domains in medicine in which humans are essential from those 
in which computation is essential and computers are likely to 
play a primary role [33]. He emphasized the importance of 
human judgment in the former domain, which includes most of 
clinical medicine, but does not include the evaluation and 
interpretation of physiological parameters, for example blood 
gases, which is the proper domain of computers. With regard to 
the Blois paradigm, we propose that computer processing of 
histopathology images falls within the computational domain, 
and computers are likely to play a primary role. 

VI. CONCLUSION 
In this study, we address the CIN classification problem by 

focusing on localized epithelium regions. The varying atypical 
nuclei density which is crucial in CIN determination is better 
analyzed by sequence mapping of the deep learning features. 
This sequence is interpreted in both directions under weak 
supervision with the long-term and short-term memory of the 
feature information. We employed an attention-based fusion 
approach to carry out an image-level classification. This 
hierarchical approach not only produces the image-level CIN 

classification labels but also provides the contribution of each 
individual vertical segment of the epithelium towards the whole 
image classification. We conjecture that this information 
highlights the highest-risk areas; this serves as an automated 
check for the pathologist’s assessment. 

We observed that our proposed model, DeepCIN, has out-
performed state-of-the-art models in classification accuracy. 
The final image-level classification accuracies and Cohen’s 
kappa score are {88.5% (± 2.2%), 81.5%}, {94.1% (± 2.0%), 
87.9%}, {96.7% (±1.6%), 92.5%}, {96.0% (±1.7%), 84.8%}, 
and {98.9% (± 0.0%), -} for exact class label, CIN versus 
Normal, CIN3-CIN2 versus CIN1-Normal, CIN3 versus CIN2-
CIN1-Normal and leave-one-out schemes, respectively. These 
results significantly exceed the variability of community 
pathologists when measured against the gold standard, and are 
in the range of inter-pathologist variability for expert 
pathologists as measured by the κ statistics. 

Limitations of this work include use of a database that is not 
publicly available, which precludes validation by other 
researchers. Ground truth for the entire set was based on only 
one expert pathologist. Part of the set was scored by two 
pathologists; accuracies obtained for the two sets are similar. 
Future work could improve results by including more annotated 
image data with balanced class distribution for training. There 
is also a possibility for improvements if the entire model could 
be trained end-to-end, which requires greater GPU resources. 
Our future research will focus on WSI-level classification with 
end-to-end automation which combines the proposed model 
with our previous work on automated epithelium segmentation 
[34], and automated nuclei detection [35] for extracting 
enhanced feature information. 
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